Ahmed, A., Yu, K., Xu, W., Gong, Y., & Xing, E. P. (2008). Training hierarchical feed-forward visual recognition models using transfer learning from pseudo tasks. In Proc. 10th European conference on computer vision (ECCV).
Google Scholar
Aiello, M., Pratt-Hartmann, I., & van Benthem, J. (Eds.) (2007). Handbook of spatial logics. Berlin: Springer.
MATH
Google Scholar
Bakır, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., & Vishwanathan, S. V. N. (Eds.) (2007). Predicting structured data. Cambridge: MIT Press.
Google Scholar
Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In Advances in neural information processing systems (Vol. 19, pp. 153–160). Cambridge: MIT Press.
Google Scholar
Bordes, A., Weston, J., Collobert, R., & Bengio, Y. (2011). Learning structured embeddings of knowledge bases. In Proc. 25th conference on artificial intelligence (AAAI).
Google Scholar
Bottou, L. (2008). Artificial intelligence in seven years? Seminar presentation, University of Montreal, June 2008. http://www.iro.umontreal.ca/~lisa/seminaires/26-06-2008.html.
Bottou, L. (2011). From machine learning to machine reasoning, February 2011. arXiv:1102.1808v3.
Bottou, L., & Gallinari, P. (1991). A framework for the cooperation of learning algorithms. In Advances in neural information processing systems (Vol. 3). San Mateo: Morgan Kaufmann.
Google Scholar
Bottou, L., LeCun, Y., & Bengio, Y. (1997). Global training of document processing systems using graph transformer networks. In Proc. of computer vision and pattern recognition (pp. 489–493). New York: IEEE Press.
Google Scholar
Buntine, W. (1994). Operations for learning with graphical models. The Journal of Artificial Intelligence Research, 2, 159–225.
Google Scholar
Caruana, R. (1997). Multitask learning. Machine Learning, 28, 41–75.
Article
Google Scholar
Collobert, R. (2011). Deep learning for efficient discriminative parsing. In Proc. artificial intelligence and statistics (AISTAT).
Google Scholar
Collobert, R., & Weston, J. (2007). Fast semantic extraction using a novel neural network architecture. In Proc. 45th annual meeting of the association of computational linguistics (ACL) (pp. 560–567).
Google Scholar
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493–2537.
MATH
Google Scholar
Wiesel, T. N., & Hubel, D. H. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.
Article
Google Scholar
Etter, V. (2009). Semantic vector machines. Master’s thesis, EPFL.
Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational models. In Proc. sixteenth international joint conference on artificial intelligence (pp. 1300–1307).
Google Scholar
Grangier, D., Bottou, L., & Collobert, R. (2009). Deep convolutional networks for scene parsing. ICML 2009 Deep Learning Workshop. http://david.grangier.info/scene_parsing.
Harris, Z. S. (1968). Mathematical structures of language. New York: Wiley.
MATH
Google Scholar
Hilbert, D., & Ackermann, W. (1928). Grundzüge der theoretischen Logik. Berlin: Springer.
MATH
Google Scholar
Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks. Artificial Intelligence, 46, 47–75.
Article
Google Scholar
Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.
MathSciNet
Article
MATH
Google Scholar
Hoiem, D., Stein, A., Efros, A. A., & Hebert, M. (2007). Recovering occlusion boundaries from a single image. In Proc. international conference on computer vision (CVPR).
Google Scholar
Khardon, R., & Roth, D. (1997). Learning to reason. Journal of the ACM, 44(5), 697–725.
MathSciNet
Article
MATH
Google Scholar
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
Article
Google Scholar
LeCun, Y., Bottou, L., & HuangFu, J. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In Proc. computer vision and pattern recognition.
Google Scholar
Lighthill, J. (1973). Artificial intelligence: a general survey. In Artificial intelligence: a paper symposium. Science Research Council.
Google Scholar
Lonardi, S., Sperduti, A., & Starita, A. (1994). Encoding pyramids by labeling RAAM. In Proc. neural networks for signal processing.
Google Scholar
Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 10–60.
MathSciNet
Google Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 343–355.
Article
Google Scholar
Miller, M. (2006). Personal communication.
Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge: MIT Press.
MATH
Google Scholar
Neville, J., & Jensen, D. (2003). Collective classification with relational dependency networks. In Proc. second international workshop on multi-relational data mining (pp. 77–91).
Google Scholar
NIPS (1987–2010). Advances in neural processing information systems. Volumes 0 to 22.
Paccanaro, A., & Hinton, G. E. (2001). Learning hierarchical structures with linear relational embedding. In Advances in neural information processing systems (Vol. 14). Cambridge: MIT Press.
Google Scholar
Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo: Morgan Kaufmann.
Google Scholar
Pearl, J. (2000). Causality: models, reasoning, and inference. Cambridge: Cambridge University Press.
Google Scholar
Piaget, J. (1937). La construction du réel chez l’enfant. Neuchatel: Delachaux et Niestlé.
Google Scholar
Plate, T. (1994). Distributed Representations and Nested Compositional Structure. PhD thesis, Department of Computer Science, University of Toronto.
Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46, 77–105.
Article
Google Scholar
Popper, K. (1959). The logic of scientific discovery. Stroudsburg: Dowden, Hutchinson and Ross.
MATH
Google Scholar
Richardson, M., & Domingos, P. (2006). Markov logic networks. Journal of Machine Learning Research, 62, 107–136.
Article
Google Scholar
Riesenhuber, M., & Poggio, T. (2003). How visual cortex recognizes objects: the tale of the standard model. The Visual Neurosciences, 2, 1640–1653.
Google Scholar
Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Communications of the ACM, 5, 23–41.
Google Scholar
Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82, 273–302.
MathSciNet
Article
Google Scholar
Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). Labelme: a database and web-based tool for image annotation. International Journal of Computer Vision, 77(1–3), 157–173.
Article
Google Scholar
Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46, 159–216.
MathSciNet
Article
MATH
Google Scholar
Socher, R., Ng, A., & Manning, C. (2010). Learning continuous phrase representations and syntactic parsing with recursive neural networks. NIPS Deep Learning workshop presentation, November 2010. http://deeplearningworkshopnips2010.wordpress.com/schedule/oral1.
Socher, R., Lin, C., Ng, A. Y., & Manning, C. D. (2011). Parsing natural scenes and natural language with recursive neural networks. In Proc. 28th international conference on machine learning (ICML).
Google Scholar
Sperduti, A. (1994). In advances in neural information processing systems: Vol. 5. Encoding labeled graphs by labeling RAAM. San Mateo: Morgan Kaufmann.
Google Scholar
Ponce, J., Lazebnik, S., & Schmid, C. (2006). Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In Proc. computer vision and pattern recognition (Vol. II, pp. 2169–2178).
Google Scholar
Vapnik, V. N. (1995). The nature of statistical learning theory. Berlin: Springer.
Book
MATH
Google Scholar
von Ahn, L. (2006). Games with a purpose. IEEE Computer, 39(6), 92–94
Article
Google Scholar
Welling, M. (2009). Herding dynamic weights to learn. In Proc. 26th international conference on machine learning (pp. 1121–1128).
Google Scholar
Weston, J., Ratle, F., & Collobert, R. (2008). Deep learning via semi-supervised embedding. In Proc. 25th international conference on machine learning (pp. 1168–1175).
Chapter
Google Scholar