Achtert, E., Kriegel, H. P., Pryakhin, A., & Schubert, M. (2005). Hierarchical density-based clustering for multi-represented objects. In Workshop on mining complex data (MCD) on the 5th IEEE international conference on data mining (ICDM), Houston, TX (p. 9).
Google Scholar
Achtert, E., Böhm, C., Kriegel, H. P., Kröger, P., Müller-Gorman, I., & Zimek, A. (2006a). Finding hierarchies of subspace clusters. In Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD), Berlin, Germany (pp. 446–453). doi:10.1007/11871637_42.
Google Scholar
Achtert, E., Böhm, C., Kröger, P., & Zimek, A. (2006b). Mining hierarchies of correlation clusters. In Proceedings of the 18th international conference on scientific and statistical database management (SSDBM), Vienna, Austria (pp. 119–128). doi:10.1109/SSDBM.2006.35.
Google Scholar
Achtert, E., Kriegel, H. P., Pryakhin, A., & Schubert, M. (2006c). Clustering multi-represented objects using combination trees. In Proceedings of the 10th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Singapore (pp. 174–178). doi:10.1007/11731139_21.
Google Scholar
Achtert, E., Böhm, C., Kriegel, H. P., Kröger, P., Müller-Gorman, I., & Zimek, A. (2007a). Detection and visualization of subspace cluster hierarchies. In Proceedings of the 12th international conference on database systems for advanced applications (DASFAA), Bangkok, Thailand (pp. 152–163). doi:10.1007/978-3-540-71703-4_15.
Chapter
Google Scholar
Achtert, E., Böhm, C., Kriegel, H. P., Kröger, P., & Zimek, A. (2007b). On exploring complex relationships of correlation clusters. In Proceedings of the 19th international conference on scientific and statistical database management (SSDBM), Banff, Canada (pp. 7–16). doi:10.1109/SSDBM.2007.21.
Google Scholar
Achtert, E., Goldhofer, S., Kriegel, H. P., Schubert, E., & Zimek, A. (2012). Evaluation of clusterings—metrics and visual support. In Proceedings of the 28th international conference on data engineering (ICDE), Washington, DC (pp. 1285–1288). doi:10.1109/ICDE.2012.128.
Google Scholar
Aggarwal, C. C., Procopiuc, C. M., Wolf, J. L., Yu, P. S., & Park, J. S. (1999). Fast algorithms for projected clustering. In Proceedings of the ACM international conference on management of data (SIGMOD), Philadelphia, PA (pp. 61–72).
Google Scholar
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the 20th international conference on very large data bases (VLDB), Santiago de Chile, Chile (pp. 487–499).
Google Scholar
Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM international conference on management of data (SIGMOD), Seattle, WA (pp. 94–105).
Google Scholar
Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2004). FatiGO: a web tool for finding significant associations of Gene ontology terms with groups of genes. Bioinformatics, 20(4), 578–580. doi:10.1093/bioinformatics/btg455.
Article
Google Scholar
Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999). OPTICS: ordering points to identify the clustering structure. In Proceedings of the ACM international conference on management of data (SIGMOD), Philadelphia, PA (pp. 49–60).
Google Scholar
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25(1), 25–29.
Article
Google Scholar
Assent, I. (2012). Clustering high dimensional data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(4), 340–350.
Google Scholar
Assent, I., Krieger, R., Müller, E., & Seidl, T. (2007). DUSC: dimensionality unbiased subspace clustering. In Proceedings of the 7th IEEE international conference on data mining (ICDM), Omaha, NE (pp. 409–414). doi:10.1109/ICDM.2007.49.
Chapter
Google Scholar
Assent, I., Krieger, R., Müller, E., & Seidl, T. (2008). INSCY: indexing subspace clusters with in-process-removal of redundancy. In Proceedings of the 8th IEEE international conference on data mining (ICDM), Pisa, Italy (pp. 719–724). doi:10.1109/ICDM.2008.46.
Google Scholar
Assent, I., Müller, E., Günnemann, S., Krieger, R., & Seidl, T. (2010). Less is more: non-redundant subspace clustering. In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC.
Google Scholar
Azimi, J., & Fern, X. (2009). Adaptive cluster ensemble selection. In Proceedings of the 21st international joint conference on artificial intelligence (IJCAI), Pasadena, CA (pp. 992–997).
Google Scholar
Bade, K., & Nürnberger, A. (2008). Creating a cluster hierarchy under constraints of a partially known hierarchy. In Proceedings of the 8th SIAM international conference on data mining (SDM), Atlanta, GA (pp. 13–23).
Google Scholar
Bae, E., & Bailey, J. (2006). COALA: a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, China (pp. 53–62). doi:10.1109/ICDM.2006.37.
Google Scholar
Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label prediction of gene function. Bioinformatics, 22(7), 830–836. doi:10.1093/bioinformatics/btk048.
Article
Google Scholar
Basu, S., Davidson, I., & Wagstaff, K. (Eds.) (2008). Constraint clustering: advances in algorithms, applications and theory. Boca Raton, London, New York: CRC Press.
Google Scholar
Bayardo, R. (1998). Efficiently mining long patterns from databases. In Proceedings of the ACM international conference on management of data (SIGMOD), Seattle, WA (pp. 85–93).
Google Scholar
Bellman, R. (1961). Adaptive control processes. a guided tour. Princeton: Princeton University Press.
MATH
Google Scholar
Bennett, K. P., Fayyad, U., & Geiger, D. (1999). Density-based indexing for approximate nearest-neighbor queries. In Proceedings of the 5th ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA (pp. 233–243). doi:10.1145/312129.312236.
Google Scholar
Bernecker, T., Houle, M. E., Kriegel, H. P., Kröger, P., Renz, M., Schubert, E., & Zimek, A. (2011). Quality of similarity rankings in time series. In Proceedings of the 12th international symposium on spatial and temporal databases (SSTD), Minneapolis, MN (pp. 422–440). doi:10.1007/978-3-642-22922-0_25.
Chapter
Google Scholar
Bertoni, A., & Valentini, G. (2005). Ensembles based on random projections to improve the accuracy of clustering algorithms. In 16th Italian workshop on neural nets (WIRN), and international workshop on natural and artificial immune systems (NAIS), Vietri sul Mare, Italy (pp. 31–37). doi:10.1007/11731177_5.
Google Scholar
Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is “nearest neighbor” meaningful? In Proceedings of the 7th international conference on database theory (ICDT), Jerusalem, Israel (pp. 217–235). doi:10.1007/3-540-49257-7_15.
Google Scholar
Bickel, S., & Scheffer, T. (2004). Multi-view clustering. In Proceedings of the 4th IEEE international conference on data mining (ICDM), Brighton, UK (pp. 19–26). doi:10.1109/ICDM.2004.10095.
Chapter
Google Scholar
Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with Co-training. In Proceedings of the 11th annual conference on computational learning theory (COLT), Madison, WI (pp. 92–100). doi:10.1145/279943.279962.
Google Scholar
Böhm, C., Fiedler, F., Oswald, A., Plant, C., Wackersreuther, B., & Wackersreuther, P. (2010). ITCH: information-theoretic cluster hierarchies. In Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML PKDD), Barcelona, Spain.
Google Scholar
Boley, M., & Grosskreutz, H. (2008). A randomized approach for approximating the number of frequent sets. In Proceedings of the 8th IEEE international conference on data mining (ICDM), Pisa, Italy (pp. 43–52). New York: IEEE Press.
Google Scholar
Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757–1771. doi:10.1016/j.patcog.2004.03.009.
Article
Google Scholar
Brin, S., Motwani, R., & Silverstein, C. (1997). Beyond market baskets: generalizing association rules to correlations. In Proceedings of the ACM international conference on management of data (SIGMOD), Tucson, AZ (pp. 265–276). New York: ACM Press.
Google Scholar
Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005). Diversity creation methods: a survey and categorisation. Information Fusion, 6, 5–20. doi:10.1016/j.inffus.2004.04.004.
Article
Google Scholar
Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines. In Proceedings of the 13th ACM conference on information and knowledge management (CIKM), Washington, DC (pp. 78–87). doi:10.1145/1031171.1031186.
Google Scholar
Calders, T., & Goethals, B. (2007). Non-derivable itemset mining. Data Mining and Knowledge Discovery, 14(1), 171–206.
MathSciNet
Article
Google Scholar
Campello, R. J. G. B. (2010). Generalized external indexes for comparing data partitions with overlapping categories. Pattern Recognition Letters, 31(9), 966–975. doi:10.1016/j.patrec.2010.01.002.
Article
Google Scholar
Caruana, R., Elhawary, M., Nguyen, N., & Smith, C. (2006). Meta clustering. In Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, China (pp. 107–118). doi:10.1109/ICDM.2006.103.
Google Scholar
Chakrabarti, D., Papadimitriou, S., Modha, D. S., & Faloutsos, C. (2004). Fully automatic cross-associations. In Proceedings of the 10th ACM international conference on knowledge discovery and data mining (SIGKDD), Seattle, WA (pp. 79–88).
Google Scholar
Chakrabarti, S., Dom, B., Agrawal, R., & Raghavan, P. (1998). Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. The VLDB Journal, 7(3), 163–178.
Article
Google Scholar
Chakravarthy, S. V., & Ghosh, J. (1996). Scale-based clustering using the radial basis function network. IEEE Transactions on Neural Networks, 7(5), 1250–1261.
Article
Google Scholar
Chaudhuri, K., Kakade, S. M., Livescu, K., & Sridharan, K. (2009). Multi-view clustering via canonical correlation analysis. In Proceedings of the 26th international conference on machine learning (ICML), Montreal, QC, Canada (pp. 129–136).
Google Scholar
Cheng, C. H., Fu, A. W. C., & Zhang, Y. (1999). Entropy-based subspace clustering for mining numerical data. In Proceedings of the 5th ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA (pp. 84–93). doi:10.1145/312129.312199.
Google Scholar
Clare, A., & King, R. (2001). Knowledge discovery in multi-label phenotype data. In Proceedings of the 5th European conference on principles of data mining and knowledge discoverys (PKDD), Freiburg, Germany (pp. 42–53). doi:10.1007/3-540-44794-6_4.
Chapter
Google Scholar
Clare, A., & King, R. (2002). How well do we understand the clusters found in microarray data? In Silico Biology, 2(4), 511–522.
Google Scholar
Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New York: Wiley-Interscience.
MATH
Google Scholar
Csiszár, I. (1975). I-divergence geometry of probability distributions and minimization problems. Annals of Probability, 3(1), 146–158.
MATH
Article
MathSciNet
Google Scholar
Cui, Y., Fern, X. Z., & Dy, J. G. (2007). Non-redundant multi-view clustering via orthogonalization. In Proceedings of the 7th IEEE international conference on data mining (ICDM), Omaha, NE (pp. 133–142). doi:10.1109/ICDM.2007.94.
Chapter
Google Scholar
Dang, X. H., & Bailey, J. (2010). Generation of alternative clusterings using the CAMI approach. In Proceedings of the 10th SIAM international conference on data mining (SDM), Columbus, OH (pp. 118–129).
Google Scholar
Dang, X. H., Assent, I., & Bailey, J. (2012). Multiple clustering views via constrained projections. In 3rd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with SIAM data mining 2012, Anaheim, CA.
Google Scholar
Datta, S., & Datta, S. (2006). Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics, 7, 397. doi:10.1186/1471-2105-7-397.
Article
Google Scholar
Davidson, I., & Qi, Z. (2008). Finding alternative clusterings using constraints. In Proceedings of the 8th IEEE international conference on data mining (ICDM), Pisa, Italy (pp. 773–778). doi:10.1109/ICDM.2008.141.
Google Scholar
Davidson, I., & Ravi, S. (2009). Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results. Data Mining and Knowledge Discovery, 18, 257–282.
MathSciNet
Article
Google Scholar
Davidson, I., Ravi, S. S., & Shamis, L. (2010). A SAT-based framework for efficient constrained clustering. In Proceedings of the 10th SIAM international conference on data mining (SDM), Columbus, OH (pp. 94–105).
Google Scholar
De Bie, T. (2011). Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Mining and Knowledge Discovery, 23(3), 1–40.
MathSciNet
MATH
Google Scholar
Dietterich, T. G. (2000). Ensemble methods in machine learning. In First international workshop on multiple classifier systems (MCS), Cagliari, Italy (pp. 1–15). doi:10.1007/3-540-45014-9_1.
Chapter
Google Scholar
Dietterich, T. G. (2003). Ensemble learning. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (2nd edn., pp. 405–408). Cambridge: MIT Press.
Google Scholar
Domeniconi, C. (2012). Subspace clustering ensembles (invited talk). In 3rd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with SIAM data mining 2012, Anaheim, CA.
Google Scholar
Domeniconi, C., & Al-Razgan, M. (2009). Weighted cluster ensembles: methods and analysis. ACM Transactions on Knowledge Discovery from Data, 2(4), 1–40. doi:10.1145/1460797.1460800.
Article
Google Scholar
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD), Portland, OR (pp. 226–231).
Google Scholar
Faloutsos, C., & Megalooikonomou, V. (2007). On data mining, compression and Kolmogorov complexity. In Data mining and knowledge discovery (Vol. 15, pp. 3–20). Berlin: Springer.
Google Scholar
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). Knowledge discovery and data mining: towards a unifying framework. In Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD), Portland, OR (pp. 82–88).
Google Scholar
Fern, X. Z., & Brodley, C. E. (2003). Random projection for high dimensional data clustering: a cluster ensemble approach. In Proceedings of the 20th international conference on machine learning (ICML), Washington, DC (pp. 186–193).
Google Scholar
Fern, X. Z., & Lin, W. (2008). Cluster ensemble selection. Statistical Analysis and Data Mining, 1(3), 128–141. doi:10.1002/sam.10008.
MathSciNet
Article
Google Scholar
Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78(383), 553–569.
MATH
Article
Google Scholar
Fradkin, D., & Mörchen, F. (2010). Margin-closed frequent sequential pattern mining. In Proc. ACM SIGKDD workshop on useful patterns (UP’10).
Google Scholar
François, D., Wertz, V., & Verleysen, M. (2007). The concentration of fractional distances. IEEE Transactions on Knowledge and Data Engineering, 19(7), 873–886. doi:10.1109/TKDE.2007.1037.
Article
Google Scholar
Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml, http://archive.ics.uci.edu/ml.
Fred, A. L. N., & Jain, A. K. (2005). Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 835–850.
Article
Google Scholar
Fürnkranz, J., & Sima, J. F. (2010). On exploiting hierarchical label structure with pairwise classifiers. ACM SIGKDD Explorations, 12(2), 21–25. doi:10.1145/1964897.1964903.
Article
Google Scholar
Färber, I., Günnemann, S., Kriegel, H. P., Kröger, P., Müller, E., Schubert, E., Seidl, T., & Zimek, A. (2010). On using class-labels in evaluation of clusterings. In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC.
Google Scholar
Galbrun, E., & Miettinen, P. (2011). From black and white to full colour: extending redescription mining outside the boolean world. In Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, AZ (pp. 546–557).
Google Scholar
Gallo, A., Miettinen, P., & Mannila, H. (2008). Finding subgroups having several descriptions: algorithms for redescription mining. In Proceedings of the 8th SIAM international conference on data mining (SDM), Atlanta, GA.
Google Scholar
Gao, J., & Tan, P. N. (2006). Converting output scores from outlier detection algorithms into probability estimates. In Proceedings of the 6th IEEE international conference on data mining (ICDM), Hong Kong, China (pp. 212–221). doi:10.1109/ICDM.2006.43.
Google Scholar
Gat-Viks, I., Sharan, R., & Shamir, R. (2003). Scoring clustering solutions by their biological relevance. Bioinformatics, 19(18), 2381–2389. doi:10.1093/bioinformatics/btg330.
Article
Google Scholar
Geerts, F., Goethals, B., & Mielikäinen, T. (2004). Tiling databases. In Proceedings of the 7th international conference on discovery science, Padova, Italy (pp. 278–289).
Google Scholar
Geerts, F., Goethals, B., & Van den Bussche, J. (2005). Tight upper bounds on the number of candidate patterns. ACM Transactions on Database Systems, 30(2), 333–363.
Article
Google Scholar
Geusebroek, J. M., Burghouts, G. J., & Smeulders, A. (2005). The Amsterdam library of object images. International Journal of Computer Vision, 61(1), 103–112. doi:10.1023/B:VISI.0000042993.50813.60.
Article
Google Scholar
Ghosh, J., & Acharya, A. (2011). Cluster ensembles. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(4), 305–315. doi:10.1002/widm.32.
Google Scholar
Gibbons, F. D., & Roth, F. P. (2002). Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research, 12, 1574–1581.
Article
Google Scholar
Gionis, A., Mannila, H., & Seppänen, J. K. (2004). Geometric and combinatorial tiles in 0-1 data. In Proceedings of the 8th European conference on principles and practice of knowledge discovery in databases (PKDD), Pisa, Italy (pp. 173–184).
Google Scholar
Gionis, A., Mannila, H., Mielikäinen, T., & Tsaparas, P. (2007a). Assessing data mining results via swap randomization. ACM Transactions on Knowledge Discovery from Data, 1(3), 167–176.
Article
Google Scholar
Gionis, A., Mannila, H., & Tsaparas, P. (2007b). Clustering aggregation. ACM Transactions on Knowledge Discovery from Data. doi:10.1145/1217299.1217303.
MATH
Google Scholar
Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multi-labeled classification. In Proceedings of the 8th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Sydney, Australia (pp. 22–30). doi:10.1007/978-3-540-24775-3_5.
Google Scholar
Gondek, D., & Hofmann, T. (2004). Non-redundant data clustering. In Proceedings of the 4th IEEE international conference on data mining (ICDM), Brighton, UK (pp. 75–82). doi:10.1109/ICDM.2004.10104.
Chapter
Google Scholar
Gondek, D., & Hofmann, T. (2005). Non-redundant clustering with conditional ensembles. In Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, IL (pp. 70–77). doi:10.1145/1081870.1081882.
Google Scholar
Grünwald, P. (2007). The minimum description length principle. Cambridge: MIT Press.
Google Scholar
Gullo, F., Domeniconi, C., & Tagarelli, A. (2009a). Projective clustering ensembles. In Proceedings of the 9th IEEE international conference on data mining (ICDM), Miami, FL.
Google Scholar
Gullo, F., Tagarelli, A., & Greco, S. (2009b). Diversity-based weighting schemes for clustering ensembles. In Proceedings of the 9th SIAM international conference on data mining (SDM), Sparks, NV (pp. 437–448).
Google Scholar
Gullo, F., Domeniconi, C., & Tagarelli, A. (2010). Enhancing single-objective projective clustering ensembles. In Proceedings of the 10th IEEE international conference on data mining (ICDM), Sydney, Australia.
Google Scholar
Gullo, F., Domeniconi, C., & Tagarelli, A. (2011). Advancing data clustering via projective clustering ensembles. In Proceedings of the 17th ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA.
Google Scholar
Günnemann, S., Müller, E., Färber, I., & Seidl, T. (2009). Detection of orthogonal concepts in subspaces of high dimensional data. In Proceedings of the 18th ACM conference on information and knowledge management (CIKM), Hong Kong, China (pp. 1317–1326). doi:10.1145/1645953.1646120.
Chapter
Google Scholar
Günnemann, S., Färber, I., Müller, E., & Seidl, T. (2010). ASCLU: alternative subspace clustering. In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC.
Google Scholar
Hadjitodorov, S. T., & Kuncheva, L. I. (2007). Selecting diversifying heuristics for cluster ensembles. In 7th international workshop on multiple classifier systems (MCS), Prague, Czech Republic (pp. 200–209).
Chapter
Google Scholar
Hadjitodorov, S. T., Kuncheva, L. I., & Todorova, L. P. (2006). Moderate diversity for better cluster ensembles. Information Fusion, 7(3), 264–275. doi:10.1016/j.inffus.2005.01.008.
Article
Google Scholar
Hahmann, M., Volk, P. B., Rosenthal, F., Habich, D., & Lehner, W. (2009). How to control clustering results? Flexible clustering aggregation. In Proceedings of the 8th international symposium on intelligent data analysis (IDA), Lyon, France (pp. 59–70). doi:10.1007/978-3-642-03915-7_6.
Google Scholar
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2–3), 107–145. doi:10.1023/A:1012801612483.
MATH
Article
Google Scholar
Hanhijärvi, S., Ojala, M., Vuokko, N., Puolamäki, K., Tatti, N., & Mannila, H. (2009). Tell me something I don’t know: randomization strategies for iterative data mining. In Proceedings of the 15th ACM international conference on knowledge discovery and data mining (SIGKDD), Paris, France (pp. 379–388). New York: ACM Press.
Chapter
Google Scholar
Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001. doi:10.1109/34.58871.
Article
Google Scholar
Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of the American Statistical Association, 67(337), 123–129.
Article
Google Scholar
Hartigan, J. A. (1975). Clustering algorithms. New York, London, Sydney, Toronto: Wiley.
MATH
Google Scholar
Hébert, C., & Crémilleux, B. (2005). Mining frequent delta-free patterns in large databases. In Proceedings of the 8th international conference discovery science, Singapore (pp. 124–136).
Google Scholar
Horta, D., & Campello, R. J. G. B. (2012). Automatic aspect discrimination in data clustering. Pattern Recognition, 45(12), 4370–4388.
MATH
Article
Google Scholar
Houle, M. E., Kriegel, H. P., Kröger, P., Schubert, E., & Zimek, A. (2010). Can shared-neighbor distances defeat the curse of dimensionality? In Proceedings of the 22nd international conference on scientific and statistical database management (SSDBM), Heidelberg, Germany (pp. 482–500). doi:10.1007/978-3-642-13818-8_34.
Google Scholar
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Englewood Cliffs: Prentice Hall.
MATH
Google Scholar
Jain, P., Meka, R., & Dhillon, I. S. (2008). Simultaneous unsupervised learning of disparate clusterings. Statistical Analysis and Data Mining, 1(3), 195–210. doi:10.1002/sam.10007.
MathSciNet
Article
Google Scholar
Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9), 939–952.
Article
Google Scholar
Kailing, K., Kriegel, H. P., & Kröger, P. (2004a). Density-connected subspace clustering for high-dimensional data. In Proceedings of the 4th SIAM international conference on data mining (SDM), Lake Buena Vista, FL (pp. 246–257).
Google Scholar
Kailing, K., Kriegel, H. P., Pryakhin, A., & Schubert, M. (2004b). Clustering multi-represented objects with noise. In Proceedings of the 8th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Sydney, Australia (pp. 394–403). doi:10.1007/978-3-540-24775-3_48.
Google Scholar
Klein, D., Kamvar, S. D., & Manning, C. D. (2002). From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In Proceedings of the 19th international conference on machine learning (ICML), Sydney, Australia (pp. 307–314).
Google Scholar
Knobbe, A., & Ho, E. (2006a). Pattern teams. In Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (PKDD) (Vol. 4213, pp. 577–584). Berlin: Springer.
Google Scholar
Knobbe, A. J., & Ho, E. K. Y. (2006b). Maximally informative k-itemsets and their efficient discovery. In Proceedings of the 12th ACM international conference on knowledge discovery and data mining (SIGKDD), Philadelphia, PA (pp. 237–244).
Chapter
Google Scholar
Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Proceedings of the 14th international conference on machine learning (ICML), Nashville, TN (pp. 170–178).
Google Scholar
Kontonasios, K. N., & De Bie, T. (2010). An information-theoretic approach to finding noisy tiles in binary databases. In Proceedings of the 10th SIAM international conference on data mining (SDM), Columbus, OH, SIAM (pp. 153–164).
Google Scholar
Kontonasios, K. N., Vreeken, J., & De Bie, T. (2011). Maximum entropy modelling for assessing results on real-valued data. In Proceedings of the 11th IEEE international conference on data mining (ICDM), Vancouver, BC, ICDM.
Google Scholar
Koopman, A., & Siebes, A. (2008). Discovering relational items sets efficiently. In Proceedings of the 8th SIAM international conference on data mining (SDM), Atlanta, GA (pp. 108–119).
Google Scholar
Koopman, A., & Siebes, A. (2009). Characteristic relational patterns. In Proceedings of the 15th ACM international conference on knowledge discovery and data mining (SIGKDD), Paris, France (pp. 437–446).
Chapter
Google Scholar
Kriegel, H. P., & Schubert, M. (2012). Co-RCA: unsupervised distance-learning for multi-view clustering. In 3rd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with SIAM data mining 2012, Anaheim, CA (pp. 11–18).
Google Scholar
Kriegel, H. P., & Zimek, A. (2010). Subspace clustering, ensemble clustering, alternative clustering, multiview clustering: what can we learn from each other? In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC.
Google Scholar
Kriegel, H. P., Kunath, P., Pryakhin, A., & Schubert, M. (2008). Distribution-based similarity for multi-represented multimedia objects. In Proceedings of the 14th IEEE international MultiMedia modeling conference (MMM), Kyoto, Japan (pp. 155–164). doi:10.1007/978-3-540-77409-9_15.
Google Scholar
Kriegel, H. P., Kröger, P., & Zimek, A. (2009). Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 3(1), 1–58. doi:10.1145/1497577.1497578.
Article
Google Scholar
Kriegel, H. P., Kröger, P., Sander, J., & Zimek, A. (2011a). Density-based clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3), 231–240. doi:10.1002/widm.30.
Google Scholar
Kriegel, H. P., Kröger, P., Schubert, E., & Zimek, A. (2011b). Interpreting and unifying outlier scores. In Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, AZ (pp. 13–24).
Google Scholar
Kriegel, H. P., Schubert, E., & Zimek, A. (2011c). Evaluation of multiple clustering solutions. In 2nd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with ECML PKDD 2011, Athens, Greece (pp. 55–66).
Google Scholar
Kriegel, H. P., Kröger, P., & Zimek, A. (2012). Subspace clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(4), 351–364.
Google Scholar
Kröger, P., & Zimek, A. (2009). Subspace clustering techniques. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 2873–2875). Berlin: Springer. doi:10.1007/978-0-387-39940-9_607.
Google Scholar
Kumar, A., & Daumé, H. (2011). A co-training approach for multi-view spectral clustering. In Proceedings of the 28th international conference on machine learning (ICML), Bellevue, Washington, DC, USA (pp. 393–400).
Google Scholar
Kuncheva, L. I., & Hadjitodorov, S. T. (2004). Using diversity in cluster ensembles. In Proceedings of the 2004 IEEE international conference on systems, man, and cybernetics (ICSMC), The Hague, Netherlands (pp. 1214–1219).
Google Scholar
Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. In Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, IL (pp. 157–166). doi:10.1145/1081870.1081891.
Google Scholar
Lee, S. G., Hur, J. U., & Kim, Y. S. (2004). A graph-theoretic modeling on GO space for biological interpretation of gene clusters. Bioinformatics, 20(3), 381–388. doi:10.1093/bioinformatics/btg420.
Article
Google Scholar
Lelis, L., & Sander, J. (2009). Semi-supervised density-based clustering. In Proceedings of the 9th IEEE international conference on data mining (ICDM), Miami, FL (pp. 842–847). doi:10.1109/ICDM.2009.143.
Google Scholar
Leman, D., Feelders, A., & Knobbe, A. J. (2008). Exceptional model mining. In Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML/PKDD), Antwerp, Belgium (pp. 1–16).
Chapter
Google Scholar
Li, T., & Ding, C. (2008). Weighted consensus clustering. In Proceedings of the 8th SIAM international conference on data mining (SDM), Atlanta, GA (pp. 798–809).
Google Scholar
Ling, R. F. (1972). On the theory and construction of k-clusters. Computer Journal, 15(4), 326–332.
MathSciNet
MATH
Article
Google Scholar
Ling, R. F. (1973). A probability theory of cluster analysis. Journal of the American Statistical Association, 68(341), 159–164.
MathSciNet
MATH
Article
Google Scholar
Liu, G., Li, J., Sim, K., & Wong, L. (2007). Distance based subspace clustering with flexible dimension partitioning. In Proceedings of the 23rd international conference on data engineering (ICDE), Istanbul, Turkey (pp. 1250–1254). doi:10.1109/ICDE.2007.368985.
Google Scholar
Liu, G., Sim, K., Li, J., & Wong, L. (2009). Efficient mining of distance-based subspace clusters. Statistical Analysis and Data Mining, 2(5–6), 427–444. doi:10.1002/sam.10062.
MathSciNet
Article
Google Scholar
Long, B., Zhang, Z., & Yu, P. S. (2005). Combining multiple clustering by soft correspondence. In Proceedings of the 5th IEEE international conference on data mining (ICDM), Houston, TX (pp. 282–289). doi:10.1109/ICDM.2005.45.
Chapter
Google Scholar
Lord, P. W., Stevens, R. D., Brass, A., & Goble, C. A. (2003). Investigating semantic similarity measures across the Gene ontology: the relationship between sequence and annotation. Bioinformatics, 19(10), 1275–1283. doi:10.1093/bioinformatics/btg153.
Article
Google Scholar
Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1), 24–45. doi:10.1109/TCBB.2004.2.
Article
Google Scholar
Mampaey, M., Tatti, N., & Vreeken, J. (2011). Tell me what I need to know: succinctly summarizing data with itemsets. In Proceedings of the 17th ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA. New York: ACM Press.
Google Scholar
Mannila, H., & Toivonen, H. (1997). Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1(3), 241–258.
Article
Google Scholar
McCallum, A., Rosenfeld, R., Mitchell, T. M., & Ng, A. Y. (1998). Improving text classification by shrinkage in a hierarchy of classes. In Proceedings of the 15th international conference on machine learning (ICML), Madison, WI (pp. 359–367).
Google Scholar
Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., & Mannila, H. (2008). The discrete basis problem. IEEE Transactions on Knowledge and Data Engineering, 20(10), 1348–1362.
Article
Google Scholar
Mitchell, T. M. (1977). Version spaces: a candidate elimination approach to rule learning. In Proceedings of the 5th international joint conference on artificial intelligence (IJCAI), Cambridge, MA (pp. 305–310).
Google Scholar
Moise, G., & Sander, J. (2008). Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, NV (pp. 533–541). doi:10.1145/1401890.1401956.
Chapter
Google Scholar
Moise, G., Zimek, A., Kröger, P., Kriegel, H. P., & Sander, J. (2009). Subspace and projected clustering: experimental evaluation and analysis. Knowledge and Information Systems, 21(3), 299–326. doi:10.1007/s10115-009-0226-y.
Article
Google Scholar
Mörchen, F., Thies, M., & Ultsch, A. (2011). Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression. Knowledge and Information Systems, 29(1), 55–80.
Article
Google Scholar
Müller, E., Assent, I., Günnemann, S., Krieger, R., & Seidl, T. (2009a). Relevant subspace clustering: mining the most interesting non-redundant concepts in high dimensional data. In Proceedings of the 9th IEEE international conference on data mining (ICDM), Miami, FL (pp. 377–386). doi:10.1109/ICDM.2009.10.
Google Scholar
Müller, E., Assent, I., Krieger, R., Günnemann, S., & Seidl, T. (2009b). DensEst: density estimation for data mining in high dimensional spaces. In Proceedings of the 9th SIAM international conference on data mining (SDM), Sparks, NV (pp. 173–184).
Google Scholar
Müller, E., Günnemann, S., Assent, I., & Seidl, T. (2009c). Evaluating clustering in subspace projections of high dimensional data. In Proceedings of the 35th international conference on very large data bases (VLDB), Lyon, France (pp. 1270–1281).
Google Scholar
Nagesh, H. S., Goil, S., & Choudhary, A. (2001). Adaptive grids for clustering massive data sets. In Proceedings of the 1st SIAM international conference on data mining (SDM), Chicago, IL.
Google Scholar
Nguyen, H. V., Ang, H. H., & Gopalkrishnan, V. (2010). Mining outliers with ensemble of heterogeneous detectors on random subspaces. In Proceedings of the 15th international conference on database systems for advanced applications (DASFAA), Tsukuba, Japan (pp. 368–383). doi:10.1007/978-3-642-12026-8_29.
Chapter
Google Scholar
Niu, D., Dy, J. G., & Jordan, M. I. (2010). Multiple non-redundant spectral clustering views. In Proceedings of the 27th international conference on machine learning (ICML), Haifa, Israel (pp. 831–838).
Google Scholar
Novak, P. K., Lavrac, N., & Webb, G. I. (2009). Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10, 377–403.
MATH
Google Scholar
Ntoutsi, E., Zimek, A., Palpanas, T., Kröger, P., & Kriegel, H. P. (2012). Density-based projected clustering over high dimensional data streams. In Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA (pp. 987–998).
Google Scholar
Ojala, M. (2010). Assessing data mining results on matrices with randomization. In Proceedings of the 10th IEEE international conference on data mining (ICDM), Sydney, Australia (pp. 959–964).
Google Scholar
Ojala, M., Vuokko, N., Kallio, A., Haiminen, N., & Mannila, H. (2008). Randomization of real-valued matrices for assessing the significance of data mining results. In Proceedings of the 8th SIAM international conference on data mining (SDM), Atlanta, GA (pp. 494–505).
Google Scholar
Ojala, M., Vuokko, N., Kallio, A., Haiminen, N., & Mannila, H. (2009). Randomization methods for assessing data analysis results on real-valued matrices. Statistical Analysis and Data Mining, 2(4), 209–230.
MathSciNet
Article
Google Scholar
Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999a). Discovering frequent closed itemsets for association rules. In Proceedings of the 7th international conference on database theory (ICDT), Jerusalem, Israel.
Google Scholar
Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999b). Discovering frequent closed itemsets for association rules. In Proceedings of the 7th international conference on database theory (ICDT), Jerusalem, Israel (pp. 398–416). New York: ACM Press.
Google Scholar
Pensa, R. G., Robardet, C., & Boulicaut, J. F. (2005). A bi-clustering framework for categorical data. In Proceedings of the 9th European conference on principles and practice of knowledge discovery in databases (PKDD), Porto, Portugal (pp. 643–650).
Google Scholar
Poernomo, A. K., & Gopalkrishnan, V. (2009). Towards efficient mining of proportional fault-tolerant frequent itemsets. In Proceedings of the 15th ACM international conference on knowledge discovery and data mining (SIGKDD), Paris, France (pp. 697–706).
Chapter
Google Scholar
Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Guissem, W., Hennig, L., Thiele, L., & Zitzler, E. (2006). A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22(9), 1122–1129. doi:10.1093/bioinformatics/btl060.
Article
Google Scholar
Qi, Z. J., & Davidson, I. (2009). A principled and flexible framework for finding alternative clusterings. In Proceedings of the 15th ACM international conference on knowledge discovery and data mining (SIGKDD), Paris, France (pp. 717–726). doi:10.1145/1557019.1557099.
Chapter
Google Scholar
Ramakrishnan, N., Kumar, D., Mishra, B., Potts, M., & Helm, R. F. (2004). Turning cartwheels: an alternating algorithm for mining redescriptions. In Proceedings of the 10th ACM international conference on knowledge discovery and data mining (SIGKDD), Seattle, WA (pp. 266–275).
Google Scholar
Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(1), 465–471.
MATH
Article
Google Scholar
Schapire, R. E., & Singer, Y. (2000). BoosTexter: a boosting-based system for text categorization. Machine Learning, 39(2–3), 135–168. doi:10.1023/A:1007649029923.
MATH
Article
Google Scholar
Schubert, E., Wojdanowski, R., Zimek, A., & Kriegel, H. P. (2012). On evaluation of outlier rankings and outlier scores. In Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA (pp. 1047–1058).
Google Scholar
Segal, E., Taskar, B., Gasch, A., Friedman, N., & Koller, D. (2001). Rich probabilistic models for gene expression. Bioinformatics, 17(Suppl(1), S243–S252.
Article
Google Scholar
Seppanen, J. K., & Mannila, H. (2004). Dense itemsets. In Proceedings of the 10th ACM international conference on knowledge discovery and data mining (SIGKDD), Seattle, WA (pp. 683–688).
Google Scholar
Sibson, R. (1973). SLINK: an optimally efficient algorithm for the single-link cluster method. Computer Journal, 16(1), 30–34. doi:10.1093/comjnl/16.1.30.
MathSciNet
Article
Google Scholar
Silla, C. N., & Freitas, A. A. (2011). A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1–2), 31–72. doi:10.1007/s10618-010-0175-9.
MathSciNet
MATH
Article
Google Scholar
Sim, K., Gopalkrishnan, V., Zimek, A., & Cong, G. (2012). A survey on enhanced subspace clustering. Data Mining and Knowledge Discovery. doi:10.1007/s10618-012-0258-x.
MATH
MathSciNet
Google Scholar
Singh, V., Mukherjee, L., Peng, J., & Xu, J. (2010). Ensemble clustering using semidefinite programming with applications. Machine Learning, 79(1–2), 177–200.
MathSciNet
Article
Google Scholar
Smets, K., & Vreeken, J. (2012). Slim: directly mining descriptive patterns. In Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA (pp. 1–12). Philadelphia: Society for Industrial and Applied Mathematics (SIAM).
Google Scholar
Sneath, P. H. A. (1957). The application of computers to taxonomy. Journal of General Microbiology, 17, 201–226.
Article
Google Scholar
Sridharan, K., & Kakade, S. M. (2008). An information theoretic framework for multiview learning. In Proceedings of the 21st annual conference on learning theory (COLT), Helsinki, Finland (pp. 403–414).
Google Scholar
Strehl, A., & Ghosh, J. (2002). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.
MathSciNet
MATH
Google Scholar
Stuetzle, W. (2003). Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. Journal of Classification, 20(1), 25–47. doi:10.1007/s00357-003-0004-6.
MathSciNet
MATH
Article
Google Scholar
Tatti, N. (2008). Maximum entropy based significance of itemsets. Knowledge and Information Systems, 17(1), 57–77.
Article
Google Scholar
Tatti, N., & Mörchen, F. (2011). Finding robust itemsets under subsampling. In Proceedings of the 11th IEEE international conference on data mining (ICDM), Vancouver, BC (pp. 705–714).
Google Scholar
Tatti, N., & Vreeken, J. (2011). Comparing apples and oranges: measuring differences between data mining results. In Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML PKDD), Athens, Greece (pp. 398–413). Berlin: Springer.
Chapter
Google Scholar
Tatti, N., & Vreeken, J. (2012). The long and the short of it: summarizing event sequences with serial episodes. In Proceedings of the 18th ACM international conference on knowledge discovery and data mining (SIGKDD), Beijing, China.
Google Scholar
Thabtah, F. A., Cowling, P., & Peng, Y. (2004). MMAC: a new multi-class, multi-label associative classification approach. In Proceedings of the 4th IEEE international conference on data mining (ICDM), Brighton, UK (pp. 217–224). doi:10.1109/ICDM.2004.10117.
Chapter
Google Scholar
Topchy, A., Jain, A., & Punch, W. (2005). Clustering ensembles: models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1866–1881. doi:10.1109/TPAMI.2005.237.
Article
Google Scholar
Topchy, A. P., Law, M. H. C., Jain, A. K., & Fred, A. L. (2004). Analysis of consensus partition in cluster ensemble. In Proceedings of the 4th IEEE international conference on data mining (ICDM), Brighton, UK (pp. 225–232). doi:10.1109/ICDM.2004.10100.
Chapter
Google Scholar
Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: an overview. International Journal of Data Warehousing and Mining, 3(3), 1–13.
Article
Google Scholar
Valentini, G., & Masulli, F. (2002). Ensembles of learning machines. In Proceedings of the 13th Italian workshop on neural nets, Vietri, Italy (pp. 3–22). doi:10.1007/3-540-45808-5_1.
Google Scholar
van Leeuwen, M., Vreeken, J., & Siebes, A. (2009). Identifying the components. Data Mining and Knowledge Discovery, 19(2), 173–292.
MathSciNet
Article
Google Scholar
Vendramin, L., Campello, R. J. G. B., & Hruschka, E. R. (2010). Relative clustering validity criteria: a comparative overview. Statistical Analysis and Data Mining, 3(4), 209–235. doi:10.1002/sam.10080.
MathSciNet
Google Scholar
Vreeken, J., & Zimek, A. (2011). When pattern met subspace cluster—a relationship story. In 2nd MultiClust workshop: discovering, summarizing and using multiple clusterings held in conjunction with ECML PKDD 2011, Athens, Greece (pp. 7–18).
Google Scholar
Vreeken, J., van Leeuwen, M., & Siebes, A. (2011). Krimp: mining itemsets that compress. Data Mining and Knowledge Discovery, 23(1), 169–214.
MathSciNet
MATH
Article
Google Scholar
Wang, C., & Parthasarathy, S. (2006). Summarizing itemset patterns using probabilistic models. In Proceedings of the 12th ACM international conference on knowledge discovery and data mining (SIGKDD), Philadelphia, PA (pp. 730–735).
Chapter
Google Scholar
Wang, H., Azuaje, F., Bodenreider, O., & Dopazo, J. (2004). Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships. In Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology (CIBCB), La Jolla, CA.
Google Scholar
Webb, G. I. (2007). Discovering significant patterns. Machine Learning, 68(1), 1–33.
Article
Google Scholar
Wishart, D. (1969). Mode analysis: a generalization of nearest neighbor which reduces chaining effects. In A. J. Cole (Ed.), Numerical taxonomy (pp. 282–311).
Google Scholar
Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In Proceedings of the 1st European symposium on principles of data mining and knowledge discovery (PKDD), Trondheim, Norway (pp. 78–87).
Chapter
Google Scholar
Xiang, Y., Jin, R., Fuhry, D., & Dragan, F. (2011). Summarizing transactional databases with overlapped hyperrectangles. Data Mining and Knowledge Discovery, 23(2), 215–251.
MathSciNet
MATH
Article
Google Scholar
Yan, B., & Domeniconi, C. (2006). Subspace metric ensembles for semi-supervised clustering of high dimensional data. In Proceedings of the 17th European conference on machine learning (ECML), Berlin, Germany (pp. 509–520).
Google Scholar
Yan, X., Cheng, H., Han, J., & Xin, D. (2005). Summarizing itemset patterns: a profile-based approach. In Proceedings of the 11th ACM international conference on knowledge discovery and data mining (SIGKDD), Chicago, IL (pp. 314–323).
Google Scholar
Zeeberg, B. R., Feng, W., Wang, G., Wang, M. D., Fojo, A. T., Sunshine, M., Narasimhan, S., Kane, D. W., Reinhold, W. C., Lababidi, S., Bussey, K. J., Riss, J., Barrett, J. C., & Weinstein, J. N. (2003). GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biology, 4(4), R28.
Article
Google Scholar
Zheng, L., & Li, T. (2011). Semi-supervised hierarchical clustering. In Proceedings of the 11th IEEE international conference on data mining (ICDM), Vancouver, BC (pp. 982–991).
Google Scholar
Zimek, A., Buchwald, F., Frank, E., & Kramer, S. (2010). A study of hierarchical and flat classification of proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(3), 563–571. doi:10.1109/TCBB.2008.104.
Article
Google Scholar
Zimek, A., Schubert, E., & Kriegel, H. P. (2012). A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, 5(5), 363–387. doi:10.1002/sam.11161.
MathSciNet
Article
Google Scholar