Al Hasan, M., Chaoji, V., Salem, S., Besson, J., & Zaki, M. (2007). Origami: mining representative orthogonal graph patterns. In Seventh IEEE international conference on data mining (ICDM 2007) (pp. 153–162). Washington: IEEE Computer Society.
Chapter
Google Scholar
Benigni, R., & Bossa, C. (2008). Structure alerts for carcinogenicity, and the salmonella assay system: a novel insight through the chemical relational databases technology. Mutation Research/Reviews in Mutation Research, 659(3), 248–261.
Article
Google Scholar
Bringmann, B., Zimmermann, A., Raedt, L. D., & Nijssen, S. (2006). Don’t be afraid of simpler patterns. In Proceedings 10th PKDD (pp. 55–66). Berlin: Springer.
Google Scholar
Chi, Y., Muntz, R. R., Nijssen, S., & Kok, J. N. (2001). Frequent subtree mining—an overview.
Helma, C. (2006). Lazy structure-activity relationships (Lazar) for the prediction of rodent carcinogenicity and salmonella mutagenicity. In Molecular diversity (pp. 147–158).
Jahn, K., & Kramer, S. (2005). Optimizing gSpan for molecular datasets. In: Proceedings of the third international workshop on mining graphs, trees and sequences (MGTS-2005).
Kramer, S., De Raedt, L., & Helma, C. (2001). Molecular feature mining in HIV data. In KDD ’01: proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 136–143). New York: ACM.
Chapter
Google Scholar
Maunz, A., Helma, C., & Kramer, S. (2009). Large-scale graph mining using backbone refinement classes. In KDD ’09: proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 617–626). New York: ACM.
Chapter
Google Scholar
Morishita, S., & Sese, J. (2000). Traversing itemset lattice with statistical metric pruning. In Proceedings of the 19th ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (pp. 226–236). New York: ACM.
Google Scholar
Nijssen, S., & Kok, J. N. (2004). A quickstart in frequent structure mining can make a difference. In KDD ’04: proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 647–652). New York: ACM.
Chapter
Google Scholar
Nijssen, S., & Kok, J. N. (2006). Frequent subgraph miners: runtime don’t say everything. In Proceedings of the international workshop on mining and learning with graphs (MLG 2006) (pp. 173–180). Berlin, Germany.
OpenTox: A predictive toxicology framework. http://www.opentox.org. See also: Hardy, B., Douglas, N., Helma, C., et al.: Collaborative development of predictive toxicology applications fifth international symposium on computational methods in toxicology and pharmacology integrating internet resources (CMTPI 2009) (to appear). London: Taylor & Francis.
Rückert, U., & Kramer, S. (2007). Optimizing feature sets for structured data. In Proceedings of the 18th European conference on machine learning (ECML07) (pp. 716–723). Berlin: Springer-Verlag.
Google Scholar
Schulz, H., Kersting, C., & Karwath, A. ILP, the blind, and the elephant: Euclidean embedding of co-proven queries. In 19th international conference on inductive logic programming (ILP 2009). http://www.cs.kuleuven.be/dtai/ilp-mlg-srl/dokuwiki/doku.php?id=paper:ilp:33.
Székely, L., & Wang, H. (2005). On subtrees of trees. Advances in Applied Mathematics, 34(1), 138–155. doi:10.1016/j.aam.2004.07.002.
Article
MATH
MathSciNet
Google Scholar
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.
Article
Google Scholar
Wörlein, M., Meinl, T., Fischer, I., & Philippsen, M. (2005). A quantitative comparison of the subgraph miners MoFa, gSpan, ffsm, and Gaston. In Proceedings of PKDD (pp. 392–403). Berlin: Springer-Verlag.
Google Scholar
Yan, X., & Han, J. (2002). gSpan: graph-based substructure pattern mining. In ICDM ’02: proceedings of the 2002 IEEE international conference on data mining (ICDM’02) (p. 721). Washington: IEEE Computer Society.
Google Scholar
Yan, X., & Han, J. (2003). Closegraph: mining closed frequent graph patterns. In KDD ’03: proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 286–295). New York: ACM.
Chapter
Google Scholar