Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the web: from relations to semistructured data and XML. San Mateo: Morgan Kaufmann.
Google Scholar
Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N., Smola, A. J., & Kriegel, H.-P. (2006). Protein function prediction via graph kernels. Bioinformatics, 21(suppl. 1), i47–i56.
Google Scholar
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
MATH
Google Scholar
Bringmann, B., Zimmermann, A., Raedt, L. D., & Nijssen, S. (2006). Don’t be afraid of simpler patterns. In 10th European conference on principles and practice of knowledge discovery in databases (PKDD) (pp. 55–66).
Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines. In ACM 13th conference on information and knowledge management (pp. 78–87). New York: ACM Press.
Google Scholar
Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the 12th international conference on machine learning (pp. 115–123). San Mateo: Morgan Kaufmann.
Google Scholar
Demiriz, A., Bennet, K. P., & Shawe-Taylor, J. (2002). Linear programming boosting via column generation. Machine Learning, 46(1–3), 225–254.
Article
MATH
Google Scholar
du Merle, O., Villeneuve, D., Desrosiers, J., & Hansen, P. (1999). Stabilized column generation. Discrete Mathematics, 194, 229–237.
Article
MathSciNet
MATH
Google Scholar
Duran, J. L., Leland, B. A., Henry, D. R., & Nourse, J. G. (2002). Reoptimization of MDL keys for use in drug discovery. Journal of Chemical Information and Computer Sciences, 42(6), 1273–1280.
Google Scholar
Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge: Cambridge University Press.
MATH
Google Scholar
Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In Proceedings of the 15th international conference on machine learning (pp. 114–151). San Mateo: Morgan Kaufmann.
Google Scholar
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
Article
MathSciNet
MATH
Google Scholar
Fröhrich, H., Wegner, J., Sieker, F., & Zell, Z. (2006). Kernel functions for attributed molecular graphs—a new similarity based approach to ADME prediction in classification and regression. QSAR & Combinatorial Science, 25(4), 317–326.
Article
Google Scholar
Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. In Proceedings of the 16th annual conference on computational learning theory and 7th kernel workshop (pp. 129–143). Berlin: Springer.
Google Scholar
Gasteiger, J., & Engel, T. (2003). Chemoinformatics: a textbook. New York: Wiley-VCH.
Book
Google Scholar
Hamada, M., Tsuda, K., Kudo, T., Kin, T., & Asai, K. (2006). Mining frequent stem patterns from unaligned RNA sequences. Bioinformatics, 22, 2480–2487.
Article
Google Scholar
Helma, C., Cramer, T., Kramer, S., & Raedt, L. D. (2004). Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. Journal of Chemical Information and Computer Sciences, 44, 1402–1411.
Google Scholar
Hong, H., Fang, H., Xie, Q., Perkins, R., Sheehan, D. M., & Tong, W. (2003). Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor. SAR and QSAR in Environmental Research, 14(5–6), 373–388.
Article
Google Scholar
Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic pattern kernels for predictive graph mining. In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 158–167). New York: ACM Press.
Chapter
Google Scholar
Inokuchi, A. (2005). Mining generalized substructures from a set of labeled graphs. In Proceedings of the 4th IEEE international conference on data mining (pp. 415–418). Los Alamitos: IEEE Computer Society.
Google Scholar
James, C. A., Weininger, D., & Delany, J. (2004). Daylight theory manual.
Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between labeled graphs. In Proceedings of the 21st international conference on machine learning (pp. 321–328). Menlo Park: AAAI Press.
Google Scholar
Kazius, J., Nijssen, S., Kok, J., Bäck, T., & Ijzerman, A. P. (2006). Substructure mining using elaborate chemical representation. Journal of Chemical Information and Modeling, 46, 597–605.
Article
Google Scholar
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 1–2, 273–324.
Article
Google Scholar
Kudo, T., Maeda, E., & Matsumoto, Y. (2005). An application of boosting to graph classification. In Advances in neural information processing systems 17 (pp. 729–736). Cambridge: MIT Press.
Google Scholar
Le, Q. V., Smola, A. J., & Gärtner, T. (2006). Simpler knowledge-based support vector machines. In Proceedings of the 23rd international conference on machine learning (pp. 521–528). New York: ACM Press.
Chapter
Google Scholar
Luenberger, D. G. (1969). Optimization by vector space methods. New York: Wiley.
MATH
Google Scholar
Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., & Vert, J.-P. (2005). Graph kernels for molecular structure—activity relationship analysis with support vector machines. Journal of Chemical Information and Modeling, 45, 939–951.
Article
Google Scholar
Mahé, P., Ralaivola, L., Stoven, V., & Vert, J.-P. (2006). The pharmacophore kernel for virtual screening with support vector machines. Journal of Chemical Information and Modeling, 46(5), 2003–2014.
Article
Google Scholar
Morishita, S. (2001). Computing optimal hypotheses efficiently for boosting. In Discovery science (pp. 471–481).
Morishita, S., & Sese, J. (2000). Traversing itemset lattices with statistical metric pruning. In Proceedings of ACM SIGACT-SIGMOD-SIGART symposium on database systems (PODS) (pp. 226–236).
Nijssen, S., & Kok, J. N. (2004). A quickstart in frequent structure mining can make a difference. In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 647–652). New York: ACM Press.
Chapter
Google Scholar
Quinlan, J. R. (1993). C4.5: programs for machine learning. San Mateo: Morgan Kaufmann.
Google Scholar
Ralaivola, L., Swamidass, S. J., Saigo, H., & Baldi, P. (2005). Graph kernels for chemical informatics. Neural Networks, 18(8), 1093–1110.
Article
Google Scholar
Rätsch, G., Mika, S., Schölkopf, B., & Müller, K.-R. (2002). Constructing boosting algorithms from SVMs: an application to one-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1184–1199.
Article
Google Scholar
Saigo, H., Kadowaki, T., & Tsuda, K. (2006). A linear programming approach for molecular QSAR analysis. In T. Gärtner, G.C. Garriga, & T. Meinl, (Eds.), International workshop on mining and learning with graphs (MLG) (pp. 85–96).
Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge: MIT Press.
Google Scholar
Shi, L. M., Fang, H., Tong, W., Wu, J., Perkins, R., & Blair, R. M. (2001). QSAR models using a large diverse set of estrogens. Journal of Chemical Information and Computer Sciences, 41, 186–195.
Google Scholar
Takabayashi, K., Nguyen, P. C., Ohara, K., Motoda, H., & Washio, T. (2006). Mining discriminative patterns from graph structured data with constrained search. In T. Gärtner, G.C. Garriga, & T. Meinl (Eds.), Proceedings of the international workshop on mining and learning with graphs (MLG) (pp. 205–212).
Tibshrani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, Series B, 58(1), 267–288.
MathSciNet
Google Scholar
Wale, N., & Karypis, G. (2006). Comparison of descriptor spaces for chemical compound retrieval and classification. In Proceedings of the 2006 IEEE international conference on data mining (pp. 678–689).
Yan, X., & Han, J. (2002a). gSpan: graph-based substructure pattern mining. In Proceedings of the 2002 IEEE international conference on data mining (pp. 721–724). Los Alamitos: IEEE Computer Society.
Google Scholar
Yan, X., & Han, J. (2002b). gSpan: graph-based substructure pattern mining (Technical report). Department of Computer Science, University of Illinois at Urbana-Champaign.
Yuan, C., & Casasent, D. (2003). A novel support vector classifier with better rejection performance. In Proceedings of 2003 IEEE computer society conference on pattern recognition and computer vision (CVPR) (pp. 419–424).
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67(2), 301–320.
Article
MathSciNet
MATH
Google Scholar