Skip to main content

Advertisement

SpringerLink
  • Journal of Philosophical Logic
  • Journal Aims and Scope
  • Submit to this journal
A Class of Implicative Expansions of Belnap-Dunn Logic in which Boolean Negation is Definable
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The Class of All Natural Implicative Expansions of Kleene’s Strong Logic Functionally Equivalent to Łkasiewicz’s 3-Valued Logic Ł3

02 November 2019

Gemma Robles & José M. Méndez

The Normal and Self-extensional Extension of Dunn–Belnap Logic

25 May 2020

Arnon Avron

A Class of Implicative Expansions of Kleene’s Strong Logic, a Subclass of Which Is Shown Functionally Complete Via the Precompleteness of Łukasiewicz’s 3-Valued Logic Ł3

16 May 2021

Gemma Robles & José M. Méndez

An Extended Paradefinite Logic Combining Conflation, Paraconsistent Negation, Classical Negation, and Classical Implication: How to Construct Nice Gentzen-type Sequent Calculi

03 July 2022

Norihiro Kamide

Axiomatisations of the Genuine Three-Valued Paraconsistent Logics $$\mathbf {L3A_G}$$ L 3 A G and $$\mathbf {L3B_G}$$ L 3 B G

28 February 2021

Alejandro Hernández-Tello, Miguel Pérez-Gaspar & Verónica Borja Macías

Quasi-N4-lattices

22 February 2022

Umberto Rivieccio

Two-sided Sequent Calculi for FDE-like Four-valued Logics

25 August 2022

Barteld Kooi & Allard Tamminga

Modal and Intuitionistic Variants of Extended Belnap–Dunn Logic with Classical Negation

09 April 2021

Norihiro Kamide

Non-distributive Relatives of ETL and NFL

10 March 2020

Daniil Kozhemiachenko

Download PDF
  • Open Access
  • Published: 09 January 2023

A Class of Implicative Expansions of Belnap-Dunn Logic in which Boolean Negation is Definable

  • Gemma Robles  ORCID: orcid.org/0000-0001-6495-03881 &
  • José M. Méndez  ORCID: orcid.org/0000-0002-9560-33272 

Journal of Philosophical Logic (2023)Cite this article

  • 86 Accesses

  • 1 Altmetric

  • Metrics details

Abstract

Belnap and Dunn’s well-known 4-valued logic FDE is an interesting and useful non-classical logic. FDE is defined by using conjunction, disjunction and negation as the sole propositional connectives. Then the question of expanding FDE with an implication connective is of course of great interest. In this sense, some implicative expansions of FDE have been proposed in the literature, among which Brady’s logic BN4 seems to be the preferred option of relevant logicians. The aim of this paper is to define a class of implicative expansions of FDE in whose elements Boolean negation is definable, whence strong logics such as the paraconsistent and paracomplete logic PŁ4 and BN4 itself are definable, in addition to classical propositional logic.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Anderson, A. R., & Belnap, N. D. (1975). Entailment. The Logic of Relevance and Necessity Vol. I. Princeton: Princeton University Press.

    Google Scholar 

  2. Avron, A. (2020). The normal and self-extensional extension of Dunn–Belnap Logic. Logica Universalis, 14(3), 281–296. https://doi.org/10.1007/s11787-020-00254-1.

    Article  Google Scholar 

  3. Avron, A. (2021). Proof systems for 3-valued logics based on Gödel’s implication. Logic Journal of the IGPL, jzab013. https://doi.org/10.1093/jigpal/jzab013.

  4. Blanco, J. M. (2022). EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes. Logic and Logical Philosophy, 31(1), 75–104. https://doi.org/10.12775/LLP.2021.010.

    Article  Google Scholar 

  5. Belnap Jr, N. D. (1977a). In Epstein, G., Dunn, J. M., Belnap Jr, N. D., & Reidel D. (Eds.), A useful four-valued logic, (pp. 8–37). Dordrecht: Publishing Co.

  6. Belnap Jr, N. D. (1977b). In Ryle, G., & Belnap Jr, N. D. (Eds.), How a computer should think, (pp. 30–55). Stocksfield: Oriel Press Ltd.

  7. Brady, R. T. (1982). Completeness proofs for the systems RM3 and BN4. Logique et Analyse, 25(97), 9–32.

    Google Scholar 

  8. Brady, R. T. (Ed.) (2003). Relevant logics and their rivals, vol II. Aldershot: Ashgate.

  9. Brady, R. T. (2006). Universal logic CSLI. Stanford, CA.

  10. Carnielli, W., Marcos, J., & Amo, S. D. E. (2000). Formal inconsistency and evolutionary databases. Logic and Logical Philosophy, 8, 115–152. https://doi.org/10.12775/LLP.2000.008.

    Article  Google Scholar 

  11. De, M., & Omori, H. (2015). Classical negation and expansions of Belnap–Dunn logic. Studia Logica, 103(4), 825–851. https://doi.org/10.1007/s11225-014-9595-7.

    Article  Google Scholar 

  12. Dunn, J. M. (1966). The algebra of intensional logics. In PhD Thesis. University of Pittsburgh. UMI, Ann Arbor, MI. (Published as vol. 2 in the Logic PhDs series by College Publications, London, UK, 2019.

  13. Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and “coupled trees.” Philosophical Studies, 29, 149–168.

    Article  Google Scholar 

  14. Dunn, J. M. (2000). Partiality and its dual. Studia Logica, 66(1), 5–40. https://doi.org/10.1023/A:1026740726955.

    Article  Google Scholar 

  15. González, C. (2011). MaTest, v. 1.3.2a. https://sites.google.com/site/sefusmendez/matest. Last Accessed 29 Apr 2022.

  16. Kamide, N., & Omori, H. (2017). An extended first-order Belnap-Dunn logic with classical negation. In A. Baltag, J. Seligman, & Yamada T. (Eds.) Logic, Rationality, and Interaction: Lecture Notes in Computer Science, vol. 10455 (pp. 79–93). Springer, Berlin, Heidelbereg. https://doi.org/10.1007/978-3-662-55665-8_6.

  17. Karpenko, A. S. (1999). Jaśkowski’s criterion and three-valued paraconsistent logics. Logic and Logical Philosophy, 7, 81–86. https://doi.org/10.12775/LLP.1999.006.

    Article  Google Scholar 

  18. López Velasco, S. M. (2020). Estudio sobre las variantes de la matriz tetravaluada de Brady que verifican la lógica básica de Routley y Meyer. PhD thesis Universidad de Salamanca, Salamanca, Spain.

  19. López, S. M. (2022). Belnap-Dunn semantics for the variants of BN4 and E4 which contain Routley and Meyer’s logic B. Logic and Logical Philosophy, 31(1), 29–56. https://doi.org/10.12775/LLP.2021.004.

    Article  Google Scholar 

  20. Łukasiewicz, J., & Tarski, A. (1930). Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, Classe, III(23), 30–50.

    Google Scholar 

  21. Méndez, J. M., & Robles, G. (2015). A strong and rich 4-valued modal logic without Łukasiewicz-type paradoxes. Logica Universalis, 9(4), 501—522. https://doi.org/10.1007/s11787-015-0130-z.

    Article  Google Scholar 

  22. Méndez, J. M., & Robles, G. (2016a). The logic determined by Smiley’s matrix for Anderson and Belnap’s first-degree entailment logic. Journal of Applied Non-Classical Logics, 26(1), 47–68. https://doi.org/10.1080/11663081.2016.1153930.

    Article  Google Scholar 

  23. Méndez, J. M., & Robles, G. (2016b). Strengthening Brady’s paraconsistent 4-valued logic BN4 with truth-functional modal operators. Journal of Logic Language and Information, 25(2), 163–189. https://doi.org/10.1007/s10849-016-9237-8.

    Article  Google Scholar 

  24. Meyer, R. K., Giambrone, S., & Brady, R. T. (1984). Where gamma fails. Studia Logica, 43, 247–256. https://doi.org/10.1007/BF02429841.

    Article  Google Scholar 

  25. Omori, H., & Wansing, H. (2017). 40 years of FDE: An introductory overview. Studia Logica, 10(6), 1021–1049. https://doi.org/10.1007/s11225-017-9748-6.

    Article  Google Scholar 

  26. Omori, H. & Wansing H. (Eds.) (2019). New essays on Belnap-Dunn logic. Synthese Library (Stud ies in Epistemology, Logic, Methodology, and Philosophy of Science). (Vol. 418). Cham: Springer. https://doi.org/10.1007/978-3-030-31136-0.

  27. Petrukhin, Y., & Shangin, V. (2020). Correspondence analysis and automated proof-searching for first degree entailment. European Journal of Mathematics, 6(4), 1452–1495. https://doi.org/10.1007/s40879-019-00344-5.

    Article  Google Scholar 

  28. Robles, G., & Méndez, J. M. (2016). A companion to Brady’s 4-valued relevant logic BN4: The 4-valued logic of entailment E4. Logic Journal of the IGPL, 24 (5), 838–858. https://doi.org/10.1093/jigpal/jzw011.

    Article  Google Scholar 

  29. Robles, G., & Méndez, J. M. (2019). Belnap-Dunn semantics for natural implicative expansions of Kleene’s strong three-valued matrix with two designated values. Journal of Applied Non-Classical Logics, 29(1), 37–63. https://doi.org/10.1080/11663081.2018.1534487.

    Article  Google Scholar 

  30. Robles, G., & Méndez, J. M. (2020). The class of all natural implicative expansions of Kleene’s strong logic functionally equivalent to Łukasiewicz’s 3-valued logic Ł3. Journal of Logic Language and Information, 29(3), 349–374. https://doi.org/10.1007/s10849-019-09306-2.

    Article  Google Scholar 

  31. Robles, G., & Méndez, J. M. (2022a). A remark on functional completeness of binary expansions of Kleene’s strong 3-valued logic. Logic Journal of the IGPL, 30(1), 21–33. https://doi.org/10.1093/jigpal/jzaa028.

    Article  Google Scholar 

  32. Robles, G., & Méndez J. M. (2022b). A 2 set-up Routley-Meyer semantics for the 4-valued logic PŁ4. Journal of Applied Logics — IfCoLog Journal of Logics and their Applications, 8(10), 2435–2446.

    Google Scholar 

  33. Robles, G., & Méndez, J. M. (2022c). A note on functional relations in a certain class of implicative expansions of FDE related to Brady’s 4-valued logic BN4. Logic Journal of the IGPL, jzac045, 1–8. https://doi.org/10.1093/jigpal/jzac045.

  34. Routley, R., Meyer, R. K., Plumwood, V., & Brady R. T. (1982). Relevant logics and their rivals, vol. 1. Atascadero, CA, Ridgeview Publishing Co.

  35. Slaney, J. (2005). Relevant logic and paraconsistency. In L. Bertossi, A. Hunter, & T. Schaub (Eds.) Inconsistency Tolerance, Lecture Notes in Computer Science, vol. 3300 (pp. 270–293). Berlin: Springer, DOI https://doi.org/10.1007/978-3-540-30597-2_9, (to appear in print).

Download references

Acknowledgements

We sincerely thank two anonymous referees of the Journal of Philosophical Logic for their comments and suggestion on a previous draft of this paper. - This work is funded by the Spanish Ministry of Science and Innovation (MCIN/AEI/ 10.13039/501100011033) under Grant [PID2020-116502GB-I00].

Funding

The authors declare that this work is funded by the Spanish Ministry of Science and Innovation (MCIN/AEI/ 10.13039/501100011033) (Grant number [PID2020-116502GB-I00]).

Author information

Authors and Affiliations

  1. Departamento de Psicología, Sociología y Filosofía, Universidad de León, Campus de Vegazana, s/n, León, 24071, Spain

    Gemma Robles

  2. Universidad de Salamanca, Edificio FES, Campus Unamuno, Salamanca, 37007, Spain

    José M. Méndez

Authors
  1. Gemma Robles
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. José M. Méndez
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Gemma Robles.

Ethics declarations

Competing interests

The authors declare there are no competing interests.

Financial interests

The authors declare that they have no financial interests.

Non-financial interests

The authors declare that they have no financial interests. The authors declare that they have no non-financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robles, G., Méndez, J.M. A Class of Implicative Expansions of Belnap-Dunn Logic in which Boolean Negation is Definable. J Philos Logic (2023). https://doi.org/10.1007/s10992-022-09692-2

Download citation

  • Received: 05 May 2022

  • Accepted: 03 November 2022

  • Published: 09 January 2023

  • DOI: https://doi.org/10.1007/s10992-022-09692-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Belnap-Dunn logic
  • Implicative expansions of Belnap-Dunn logic
  • Boolean negation
  • Two-valued Belnap-Dunn semantics
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.