Skip to main content

Supervaluations and the Strict-Tolerant Hierarchy


In a recent paper, Barrio, Pailos and Szmuc (BPS) show that there are logics that have exactly the validities of classical logic up to arbitrarily high levels of inference. They suggest that a logic therefore must be identified by its valid inferences at every inferential level. However, Scambler shows that there are logics with all the validities of classical logic at every inferential level, but with no antivalidities at any inferential level. Scambler concludes that in order to identify a logic, we at least need to look at the validities and the antivalidities of every inferential level. In this paper, I argue that this is still not enough to identify a logic. I apply BPS’s techniques in a super/sub-valuationist setting to construct a logic that has exactly the validities and antivalidities of classical logic at every inferential level. I argue that the resulting logic is nevertheless distinct from classical logic.

This is a preview of subscription content, access via your institution.


  1. Arruda, A. In R. Priest (Ed.) (1989). Norma aspects of the historical development of paraconsistent logic. Philosophia: Munchen.

  2. Barrio, E., Pailos, F., & Szmuc, D. (2019). A hierarchy of classical and paraconsistent logics. Journal of Philosophical Logic, 49, 93–120.

    Article  Google Scholar 

  3. Barrio, E., Pailos, F., & Szmuc, D. (2018). What is a paraconsistent logic?. In J. Malinowski W. Carnielli (Eds.) Contradictions, from Consistency to Inconsistency. Verlag: Springer.

  4. Carroll, L. (1895). What the tortoise said to achilles. Mind, 4 (14), 278–280.

    Article  Google Scholar 

  5. Cobreros, P. (2013). Vagueness: Subvaluationism. Philosophy Compass, 8(5), 472–485.

    Article  Google Scholar 

  6. Cobreros, P. (2011). Paraconsistent vagueness: a positive argument. Synthese, 183(2), 211–227.

    Article  Google Scholar 

  7. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41, 347–385.

    Article  Google Scholar 

  8. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2013). Reaching Transparent Truth. Mind, 122(488), 841–866.

    Article  Google Scholar 

  9. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerance and mixed consequence in the S’valuationist setting. Studia Logica, 100(4), 855–877.

    Article  Google Scholar 

  10. Fine, K. (1975). Vagueness, truth and logic. Synthese, 30, 265–300.

    Article  Google Scholar 

  11. Humberstone, L. (1996). Valuational semantics of rule derivability. Journal of Philosophical Logic, 25(5), 451–461.

    Article  Google Scholar 

  12. Hyde, D. (2008). Vagueness logic and ontology. Ashgate: Aldershot.

    Google Scholar 

  13. Hyde, D. (1997). From heaps and gaps to heaps of gluts. Mind, 106(424), 641–660.

    Article  Google Scholar 

  14. Hyde, D., & Colyvan, M. (2008). Paraconsistent Vagueness: Why not?. Australasian Journal of Logic, 6, 107–121.

    Article  Google Scholar 

  15. Keefe, R. (2008). Vagueness: Supervaluationism. Philosophy Compass, 3, 315–324.

    Article  Google Scholar 

  16. Keefe, R. (2000). Theories of vagueness. Cambridge: Cambridge University Press.

    Google Scholar 

  17. McGee, V., & McLaughlin, B. (1995). Distinctions without a difference. Southern Journal of Philosophy, 33, 203–251.

    Article  Google Scholar 

  18. Pailos, F. (2019). A fully classical truth theory characterized by substructural means. The Review of Symbolic Logic.

  19. Restall, G. (2005). Multiple conclusions. In P. Hajek, L. Valdes-Villanueva, & D. Westerstȧhl (Eds.) Logic, Methodology, and Philosophy of Science: Proceedings of the Twelfth International Congress (pp. 189–205). London: Kings College Publications.

  20. Ripley, D. (2018). On the ‘Transitivity’ of consequence relations. Journal of Logic and Computation, 28(2), 433–450.

    Article  Google Scholar 

  21. Ripley, D. (2015). Paraconsistent logic. Journal of Philosophical Logic, 44, 771–780.

    Article  Google Scholar 

  22. Ripley, D. (2013). Paradoxes and failures of cut. Australasian Journal of Philosophy, 91(1), 139–164.

    Article  Google Scholar 

  23. Rumfitt, I. (2000). Yes” and No”. Mind, 104(436), 781–823.

    Article  Google Scholar 

  24. Scambler, C. (2020). Classical logic and the strict tolerant hierarchy. Journal of Philosophical Logic, 49, 351–370.

    Article  Google Scholar 

  25. Scambler, C. (forthcoming). Transfinite Meta-inferences. Journal of Philosophical Logic.

  26. Van Fraassen, B. C. Singular Terms, Truth-Value Gaps, and Free Logic, (Vol. 63.

  27. Varzi, A. (2007). Supervaluationism and its Logics. Mind, 116, 633–676.

    Article  Google Scholar 

  28. Varzi, A. (1997). Inconsistency without contradiction. Notre Dame Journal of Formal Logic, 38, 621–640.

    Article  Google Scholar 

  29. Williamson, T. (1994). Vagueness. London: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Brian Porter.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Porter, B. Supervaluations and the Strict-Tolerant Hierarchy. J Philos Logic 51, 1367–1386 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Supervaluationism
  • Subvaluationism
  • Strict-Tolerant logic
  • Substructural Logic
  • metainferential hierarchy
  • Metainference
  • Classification problem