Andréka, H., Madarász, J.X., Németi, I. (2005). Mutual definability does not imply definitional equivalence, a simple example. Mathematical Logic Quarterly, 51(6), 591–597.
Article
Google Scholar
Andréka, H., Madarász, J.X., Németi, I. (2008). Defining new universes in many-sorted logic. Research report, Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci., Budapest. https://www.researchgate.net/publication/242602426.
Andréka, H., Madarász, J.X., Németi, I. (2002). with contributions from: Andai, A., Sági, G., Sain, I., Töke, C.: On the logical structure of relativity theories. Research report, Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci., Budapest. https://old.renyi.hu/pub/algebraic-logic/Contents.html.
Andréka, H., & Németi, I. (2014). Definability theory course notes. https://old.renyi.hu/pub/algebraic-logic/DefThNotes0828.pdf.
Andréka, H., Németi, I., Sain, I. (2001). Algebraic logic. In Handbook of philosophical logic Volume II (pp. 133–248): Springer.
Barrett, T.W., & Halvorson, H. (2016). Glymour and Quine on theoretical equivalence. Journal of Philosophical Logic, 45(5), 467–483. https://doi.org/10.1007/s10992-015-9382-6.
Article
Google Scholar
Barrett, T.W., & Halvorson, H. (2016). Morita equivalence. The Review of Symbolic Logic, 9(3), 556–582.
Article
Google Scholar
de Bouvère, K.L. (1965). Logical synonymy. Indagationes Mathematicae, 27, 622–629.
Article
Google Scholar
de Bouvère, K.L. (1965). Synonymous theories. In The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley (pp. 402–406). North Holland.
Chang, H. (2012). Is water
h
2
o? evidence, realism and pluralism. Dordrecht: Springer.
Book
Google Scholar
Corcoran, J. (1980). On definitional equivalence and related topics. History and Philosophy of Logic, 1(1-2), 231–234.
Article
Google Scholar
Friedman, H.A., & Visser, A. (2014). When bi-interpretability implies synonymy.
Friend, M., Khaled, M., Lefever, K., Székely, G. (2018). Distances between formal theories. arXiv:1807.01501.
Fujimoto, K. (2010). Relative truth definability of axiomatic truth theories. Bulletin of Symbolic Logic, 16(3), 305–344.
Article
Google Scholar
Glymour, C. (1970). Theoretical realism and theoretical equivalence. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1970, 275–288. https://doi.org/10.2307/495769.
Google Scholar
Glymour, C. (1977). Symposium on space and time: The epistemology of geometry. Noûs, 11(3), 227–251. https://doi.org/10.2307/2214764.
Article
Google Scholar
Glymour, C. (1980). Theory and evidence. Princeton.
Heath, T.L. (1956). The Thirteen Books of Euclid’s Elements ([Facsimile. Original publication: Cambridge University Press, 1908] 2nd ed.) Dover Publications.
Henkin, L., Monk, J., Tarski, A. (1971). Cylindric algebras Part I. North-Holland.
Henkin, L., Monk, J., Tarski, A. (1985). Cylindric algebras part II. North-Holland.
Hodges, W. (1993). Model theory. Cambridge: Cambridge University Press.
Book
Google Scholar
Hodges, W. (1997). A shorter model theory. Cambridge: Cambridge University Press.
Google Scholar
Kuhn, T. (1957). The copernican revolution: planetary astronomy in the development of western thought. Cambridge: Harvard University Press.
Google Scholar
Lefever, K. (2017). Using logical interpretation and definitional equivalence to compare classical kinematics and special relativity theory. Ph.D. thesis, Vrije Universiteit Brussel.
Lefever, K., & Székely, G. (2018). Comparing classical and relativistic kinematics in first-order-logic. Logique et Analyse, 61(241), 57–117.
Google Scholar
Madarász, J.X. (2002). Logic and relativity (in the light of definability theory). Ph.D. thesis, Eötvös Loránd Univ., Budapest.
Montague, R. (1956). Contributions to the axiomatic foundations of set theory. Ph.D. thesis, Berkeley.
Pinter, C.C. (1978). Properties preserved under definitional equivalence and interpretations. Zeitschr. f. math Logik und Grundlagen d. nlath., 24, 481–488.
Article
Google Scholar
Playfair, J. (1846). Elements of geometry. W. E. Dean.
Quine, W.V. (1946). Concatenation as a basis for arithmetic. The Journal of Symbolic Logic, 11(4), 105–114.
Article
Google Scholar
Tarski, A., Mostowski, A., Robinson, R. (1953). Undecidable theories. New York: Elsevier.
Google Scholar
Visser, A. (2006). Categories of theories and interpretations. In Logic in Tehran. Proceedings of the workshop and conference on Logic, Algebra and Arithmetic, held October 18–22, 2003, volume 26 of Lecture Notes in Logic (pp. 284–341). Wellesley, Mass: ASL, A.K. Peters, Ltd.
Visser, A. (2015). Extension & interpretability. Logic Group preprint series 329. 1874/319941. https://dspace.library.uu.nl/handle/1874/319941.