The Broadest Necessity

Article

Abstract

In this paper the logic of broad necessity is explored. Definitions of what it means for one modality to be broader than another are formulated, and it is proven, in the context of higher-order logic, that there is a broadest necessity, settling one of the central questions of this investigation. It is shown, moreover, that it is possible to give a reductive analysis of this necessity in extensional language (using truth functional connectives and quantifiers). This relates more generally to a conjecture that it is not possible to define intensional connectives from extensional notions. This conjecture is formulated precisely in higher-order logic, and concrete cases in which it fails are examined. The paper ends with a discussion of the logic of broad necessity. It is shown that the logic of broad necessity is a normal modal logic between S4 and Triv, and that it is consistent with a natural axiomatic system of higher-order logic that it is exactly S4. Some philosophical reasons to think that the logic of broad necessity does not include the S5 principle are given.

Keywords

Necessity Higher-order logic S4 Broad necessity Propositional identity Intensionality Modality 

References

  1. 1.
    Armstrong, D.M. (1989). A combinatorial theory of possibility. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. 2.
    Bacon, A. (2015). Can the classical logician avoid the revenge paradoxes? Philosophical Review, 124(3), 299–352.CrossRefGoogle Scholar
  3. 3.
    Bacon, A. Tense and relativity Nous, Forthcoming.Google Scholar
  4. 4.
    Bacon, A. Vagueness and Thought. Oxford University Press, Forthcoming.Google Scholar
  5. 5.
    Barcan, R.C. (1946). A functional calculus of first order based on strict implication. Journal of Symbolic Logic, 11(1), 1–16.CrossRefGoogle Scholar
  6. 6.
    Braun, D.M. (2002). Cognitive significance, attitude ascriptions, and ways of believing propositions. Philosophical Studies, 108(1-2), 65–81.CrossRefGoogle Scholar
  7. 7.
    Brogaard, B., & Salerno, J. (2013). Remarks on counterpossibles. Synthese, 190(4), 639–660.CrossRefGoogle Scholar
  8. 8.
    Chandler, H.S. (1976). Plantinga and the contingently possible. Analysis, 36 (2), 106–109.CrossRefGoogle Scholar
  9. 9.
    Cresswell, M.J. (1967). Propositional identity. Logique Et Analyse, 40, 283–291.Google Scholar
  10. 10.
    Crimmins, M., & Perry, J. (1989). The prince and the phone booth: Reporting puzzling beliefs. Journal of Philosophy, 86(12), 685–711.CrossRefGoogle Scholar
  11. 11.
    Dorr, C. (2014). Quantifier variance and the collapse theorems. The Monist, 97, 503–570.Google Scholar
  12. 12.
    Dorr, C. To be f is to be g. In J. Hawthorne, J. Turner (Ed), Philosophical Perspectives 30: Metaphysics. forthcoming.Google Scholar
  13. 13.
    Dorr, C., & Goodman, J. Diamonds are forever. Nous, Forthcoming.Google Scholar
  14. 14.
    Dummett, M.A.E., & Lemmon, E.J. (1959). Modal logics between s4 and s5. Mathematical Logic Quarterly, 5(1424), 250–264.CrossRefGoogle Scholar
  15. 15.
    Edgington, D. (2004). Two kinds of possibility. Aristotelian Society Supplementary Volume, 78(1), 1–22.CrossRefGoogle Scholar
  16. 16.
    Field, H. (2000). Indeterminacy, degree of belief, and excluded middle. Nous, 34(1), 1–30.CrossRefGoogle Scholar
  17. 17.
    Fine, K. (1975). Vagueness, truth and logic. Synthese, 30(3), 265–300.CrossRefGoogle Scholar
  18. 18.
    Fine, K. (1977). Prior on the construction of possible worlds and instants. World, times and selves.Google Scholar
  19. 19.
    Frege, G. (1879). Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle.Google Scholar
  20. 20.
    Frege, G. (1951). On concept and object. (Translation: P. T. geach). Mind, 60 (n/a), 168.CrossRefGoogle Scholar
  21. 21.
    Fritz, P. (2016). First-order modal logic in the necessary framework of objects. Canadian Journal of Philosophy, 46(4-5), 584–609.CrossRefGoogle Scholar
  22. 22.
    Hale, B. (1996). Absolute necessities. Philosophical Perspectives, 10, 93–117.Google Scholar
  23. 23.
    Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15(2), 81–91.CrossRefGoogle Scholar
  24. 24.
    Hindley, J.R., & Seldin, J.P. (2008). Lambda-calculus and combinators: an introduction, Vol. 13. Cambridge: Cambridge University Press.Google Scholar
  25. 25.
    Hughes, G.E., & Cresswell, M. (1996). A new introduction to modal logic routledge.Google Scholar
  26. 26.
    Kaplan, D. (1989). Demonstratives. In Almog, J., Perry, J., & Wettstein, H. (Eds.) Themes From Kaplan (pp. 481–563): Oxford University Press.Google Scholar
  27. 27.
    Kreisel, G. (1967). Informal rigour and completeness proofs. In Lakatos, I. (Ed.), Problems in the Philosophy of Mathematics (pp. 138–157). North-Holland.Google Scholar
  28. 28.
    Saul, A. (1959). Kripke. a completeness theorem in modal logic. Journal of Symbolic Logic, 24(1), 1–14.CrossRefGoogle Scholar
  29. 29.
    Kripke, S.A. (1963). Semantical considerations on modal logic. Acta Philosophica Fennica, 16(1963), 83–94.Google Scholar
  30. 30.
    Kripke, S.A. (1980). Naming and necessity, Harvard University Press, Cambridge.Google Scholar
  31. 31.
    Lewis, D.K. (1986). On the plurality of worlds. Hoboken: Blackwell Publishers.Google Scholar
  32. 32.
    McFetridge, I. (1990). Essay VIII. In Haldane, J., & Scruton, R. (Eds.) Logical Necessity and Other Essays. Aristotelian Society Series. Google Scholar
  33. 33.
    McGee, V. (1990). Truth, vagueness, and paradox: An essay on the logic of truth. Indianapolis: Hackett Publishing Company Inc.Google Scholar
  34. 34.
    Mitchell, J.C. (1996). Foundations for programming languages. Cambridge: MIT Press.Google Scholar
  35. 35.
    Nolan, D. Causal counterfactuals and impossible worlds. H. Beebee, C. Hitchcock and H. Price (Ed), Making a Difference. Oxford University Press, forthcoming.Google Scholar
  36. 36.
    Plotkin, G. (1973). Lambda-definability and logical relations.Google Scholar
  37. 37.
    Prior, A.N. (1962). Formal logic. Oxford: Clarendon Press.Google Scholar
  38. 38.
    Prior, A. N. (1971). Objects of thought. Oxford.Google Scholar
  39. 39.
    Rayo, A. On the open-endedness of logical space. unpublished manuscript.Google Scholar
  40. 40.
    Richard, M. (1983). Direct reference and ascriptions of belief. Journal of Philosophical Logic, 12(4), 425–52.CrossRefGoogle Scholar
  41. 41.
    Salmon, N. (1986). Frege’s puzzle ridgeview.Google Scholar
  42. 42.
    Salmon, N. (1989). The logic of what might have been. Philosophical Review, 98(1), 3–34.CrossRefGoogle Scholar
  43. 43.
    Saul, J.M. (2010). Simple sentences, substitution, and intuitions. UK: Oxford University Press.Google Scholar
  44. 44.
    Scroggs, S.J. (1951). Extensions of the lewis system s5. Journal of Symbolic Logic, 16(2), 112–120.CrossRefGoogle Scholar
  45. 45.
    Shapiro, S. (1987). Principles of reflection and second-order logic. Journal of Philosophical Logic, 16(3), 309–333.CrossRefGoogle Scholar
  46. 46.
    Soames, S. (1987). Direct reference, propositional attitudes, and semantic content. Philosophical Topics, 15(1), 47–87.CrossRefGoogle Scholar
  47. 47.
    Stalnaker, R.C. (1984). Inquiry. Cambridge: MIT Press.Google Scholar
  48. 48.
    Suszko, R. (1971). Identity connective and modality. Studia Logica, 27(1), 7–39.CrossRefGoogle Scholar
  49. 49.
    Suszko, R. (1975). Abolition of the Fregean axiom. Lecture Notes in Mathematics, 453, 169–239.CrossRefGoogle Scholar
  50. 50.
    Walsh, S. (2016). Predicativity, the russell-Myhill paradox, and Church’s intensional logic. Journal of Philosophical Logic, 45(3), 277–326.CrossRefGoogle Scholar
  51. 51.
    Williamson, T. (1994). Vagueness. Abingdon: Routledge.Google Scholar
  52. 52.
    Williamson, T. (1996). The necessity and determinateness of distinctness. In Lovibond, S., & Williams, S.G. (Eds.) Essays for David Wiggins: Identity, Truth and Value. Oxford: Blackwell.Google Scholar
  53. 53.
    Williamson, T. (2003). Everything. Philosophical Perspectives, 17(1), 415–465.CrossRefGoogle Scholar
  54. 54.
    Williamson, T. (2013). Modal logic as metaphysics. Oxford: Oxford University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations