# The Broadest Necessity

- 95 Downloads
- 1 Citations

## Abstract

In this paper the logic of broad necessity is explored. Definitions of what it means for one modality to be broader than another are formulated, and it is proven, in the context of higher-order logic, that there is a broadest necessity, settling one of the central questions of this investigation. It is shown, moreover, that it is possible to give a reductive analysis of this necessity in extensional language (using truth functional connectives and quantifiers). This relates more generally to a conjecture that it is not possible to define intensional connectives from extensional notions. This conjecture is formulated precisely in higher-order logic, and concrete cases in which it fails are examined. The paper ends with a discussion of the logic of broad necessity. It is shown that the logic of broad necessity is a normal modal logic between S4 and Triv, and that it is consistent with a natural axiomatic system of higher-order logic that it is exactly S4. Some philosophical reasons to think that the logic of broad necessity does not include the S5 principle are given.

### Keywords

Necessity Higher-order logic S4 Broad necessity Propositional identity Intensionality Modality### References

- 1.Armstrong, D.M. (1989).
*A combinatorial theory of possibility*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - 2.Bacon, A. (2015). Can the classical logician avoid the revenge paradoxes?
*Philosophical Review*,*124*(3), 299–352.CrossRefGoogle Scholar - 3.Bacon, A. Tense and relativity Nous, Forthcoming.Google Scholar
- 4.Bacon, A. Vagueness and Thought. Oxford University Press, Forthcoming.Google Scholar
- 5.Barcan, R.C. (1946). A functional calculus of first order based on strict implication.
*Journal of Symbolic Logic*,*11*(1), 1–16.CrossRefGoogle Scholar - 6.Braun, D.M. (2002). Cognitive significance, attitude ascriptions, and ways of believing propositions.
*Philosophical Studies*,*108*(1-2), 65–81.CrossRefGoogle Scholar - 7.Brogaard, B., & Salerno, J. (2013). Remarks on counterpossibles.
*Synthese*,*190*(4), 639–660.CrossRefGoogle Scholar - 8.Chandler, H.S. (1976). Plantinga and the contingently possible.
*Analysis*,*36*(2), 106–109.CrossRefGoogle Scholar - 9.
- 10.Crimmins, M., & Perry, J. (1989). The prince and the phone booth: Reporting puzzling beliefs.
*Journal of Philosophy*,*86*(12), 685–711.CrossRefGoogle Scholar - 11.Dorr, C. (2014). Quantifier variance and the collapse theorems.
*The Monist*,*97*, 503–570.Google Scholar - 12.Dorr, C. To be f is to be g. In J. Hawthorne, J. Turner (Ed), Philosophical Perspectives 30: Metaphysics. forthcoming.Google Scholar
- 13.Dorr, C., & Goodman, J. Diamonds are forever. Nous, Forthcoming.Google Scholar
- 14.Dummett, M.A.E., & Lemmon, E.J. (1959). Modal logics between s4 and s5.
*Mathematical Logic Quarterly*,*5*(1424), 250–264.CrossRefGoogle Scholar - 15.Edgington, D. (2004). Two kinds of possibility.
*Aristotelian Society Supplementary Volume*,*78*(1), 1–22.CrossRefGoogle Scholar - 16.Field, H. (2000). Indeterminacy, degree of belief, and excluded middle.
*Nous*,*34*(1), 1–30.CrossRefGoogle Scholar - 17.
- 18.Fine, K. (1977). Prior on the construction of possible worlds and instants. World, times and selves.Google Scholar
- 19.Frege, G. (1879). Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle.Google Scholar
- 20.Frege, G. (1951). On concept and object. (Translation: P. T. geach).
*Mind*,*60*(n/a), 168.CrossRefGoogle Scholar - 21.Fritz, P. (2016). First-order modal logic in the necessary framework of objects.
*Canadian Journal of Philosophy*,*46*(4-5), 584–609.CrossRefGoogle Scholar - 22.
- 23.Henkin, L. (1950). Completeness in the theory of types.
*Journal of Symbolic Logic*,*15*(2), 81–91.CrossRefGoogle Scholar - 24.Hindley, J.R., & Seldin, J.P. (2008). Lambda-calculus and combinators: an introduction, Vol. 13. Cambridge: Cambridge University Press.Google Scholar
- 25.Hughes, G.E., & Cresswell, M. (1996). A new introduction to modal logic routledge.Google Scholar
- 26.Kaplan, D. (1989). Demonstratives. In Almog, J., Perry, J., & Wettstein, H. (Eds.)
*Themes From Kaplan*(pp. 481–563): Oxford University Press.Google Scholar - 27.Kreisel, G. (1967). Informal rigour and completeness proofs. In Lakatos, I. (Ed.),
*Problems in the Philosophy of Mathematics*(pp. 138–157). North-Holland.Google Scholar - 28.Saul, A. (1959). Kripke. a completeness theorem in modal logic.
*Journal of Symbolic Logic*,*24*(1), 1–14.CrossRefGoogle Scholar - 29.Kripke, S.A. (1963). Semantical considerations on modal logic.
*Acta Philosophica Fennica*,*16*(1963), 83–94.Google Scholar - 30.Kripke, S.A. (1980). Naming and necessity, Harvard University Press, Cambridge.Google Scholar
- 31.Lewis, D.K. (1986).
*On the plurality of worlds*. Hoboken: Blackwell Publishers.Google Scholar - 32.McFetridge, I. (1990). Essay VIII. In Haldane, J., & Scruton, R. (Eds.)
*Logical Necessity and Other Essays. Aristotelian Society Series*. Google Scholar - 33.McGee, V. (1990).
*Truth, vagueness, and paradox: An essay on the logic of truth*. Indianapolis: Hackett Publishing Company Inc.Google Scholar - 34.Mitchell, J.C. (1996).
*Foundations for programming languages*. Cambridge: MIT Press.Google Scholar - 35.Nolan, D. Causal counterfactuals and impossible worlds. H. Beebee, C. Hitchcock and H. Price (Ed), Making a Difference. Oxford University Press, forthcoming.Google Scholar
- 36.Plotkin, G. (1973). Lambda-definability and logical relations.Google Scholar
- 37.Prior, A.N. (1962).
*Formal logic*. Oxford: Clarendon Press.Google Scholar - 38.Prior, A. N. (1971).
*Objects of thought*. Oxford.Google Scholar - 39.Rayo, A. On the open-endedness of logical space. unpublished manuscript.Google Scholar
- 40.Richard, M. (1983). Direct reference and ascriptions of belief.
*Journal of Philosophical Logic*,*12*(4), 425–52.CrossRefGoogle Scholar - 41.Salmon, N. (1986). Frege’s puzzle ridgeview.Google Scholar
- 42.Salmon, N. (1989). The logic of what might have been.
*Philosophical Review*,*98*(1), 3–34.CrossRefGoogle Scholar - 43.Saul, J.M. (2010).
*Simple sentences, substitution, and intuitions*. UK: Oxford University Press.Google Scholar - 44.Scroggs, S.J. (1951). Extensions of the lewis system s5.
*Journal of Symbolic Logic*,*16*(2), 112–120.CrossRefGoogle Scholar - 45.Shapiro, S. (1987). Principles of reflection and second-order logic.
*Journal of Philosophical Logic*,*16*(3), 309–333.CrossRefGoogle Scholar - 46.Soames, S. (1987). Direct reference, propositional attitudes, and semantic content.
*Philosophical Topics*,*15*(1), 47–87.CrossRefGoogle Scholar - 47.Stalnaker, R.C. (1984).
*Inquiry*. Cambridge: MIT Press.Google Scholar - 48.Suszko, R. (1971). Identity connective and modality.
*Studia Logica*,*27*(1), 7–39.CrossRefGoogle Scholar - 49.Suszko, R. (1975). Abolition of the Fregean axiom.
*Lecture Notes in Mathematics*,*453*, 169–239.CrossRefGoogle Scholar - 50.Walsh, S. (2016). Predicativity, the russell-Myhill paradox, and Church’s intensional logic.
*Journal of Philosophical Logic*,*45*(3), 277–326.CrossRefGoogle Scholar - 51.Williamson, T. (1994).
*Vagueness*. Abingdon: Routledge.Google Scholar - 52.Williamson, T. (1996). The necessity and determinateness of distinctness. In Lovibond, S., & Williams, S.G. (Eds.)
*Essays for David Wiggins: Identity, Truth and Value*. Oxford: Blackwell.Google Scholar - 53.Williamson, T. (2003). Everything.
*Philosophical Perspectives*,*17*(1), 415–465.CrossRefGoogle Scholar - 54.Williamson, T. (2013).
*Modal logic as metaphysics*. Oxford: Oxford University Press.CrossRefGoogle Scholar