Combinatorial Bitstring Semantics for Arbitrary Logical Fragments

Article

Abstract

Logical geometry systematically studies Aristotelian diagrams, such as the classical square of oppositions and its extensions. These investigations rely heavily on the use of bitstrings, which are compact combinatorial representations of formulas that allow us to quickly determine their Aristotelian relations. However, because of their general nature, bitstrings can be applied to a wide variety of topics in philosophical logic beyond those of logical geometry. Hence, the main aim of this paper is to present a systematic technique for assigning bitstrings to arbitrary finite fragments of formulas in arbitrary logical systems, and to study the logical and combinatorial properties of this technique. It is based on the partition of logical space that is induced by a given fragment, and sheds new light on a number of interesting issues, such as the logic-dependence of the Aristotelian relations and the subtle interplay between the Aristotelian and Boolean structure of logical fragments. Finally, the bitstring technique also allows us to systematically analyze fragments from contemporary logical systems, such as public announcement logic, which could not be done before.

Keywords

Bitstrings Combinatorial semantics Aristotelian diagram Boolean algebra Existential import Public announcement logic 

References

  1. 1.
    van der Auwera, J. (1996). Modality: The three-layered scalar square. Journal of Semantics, 13, 181–195.CrossRefGoogle Scholar
  2. 2.
    Béziau, J. Y. (2003). New light on the square of oppositions and its nameless corner. Logical Investigations, 10, 218–232.Google Scholar
  3. 3.
    Béziau, J. Y., & Payette, G. (2012). Preface. In Béziau, J Y, & Payette, G. (Eds.), The square of opposition. A general framework for cognition (pp. 9–22). Bern: Peter Lang.Google Scholar
  4. 4.
    Blanché, R. (1966). Structures Intellectuelles. Essai sur l’organisation systématique des concepts. Paris: Librairie Philosophique J Vrin.Google Scholar
  5. 5.
    Canfield, E.R. (2001). Meet and join in the lattice of set partitions. Electronic Journal of Combinatorics, 8(15), 1–8.Google Scholar
  6. 6.
    Carnielli, W., & Pizzi, C. (2008). Modalities and multimodalities. Berlin: Springer.CrossRefGoogle Scholar
  7. 7.
    Carroll, L. (1977). Symbolic Logic. Edited, with annotations and an introduction by William Warren Bartley III. New York: Clarkson N Potter.Google Scholar
  8. 8.
    Chatti, S. (2012). Logical oppositions in Arabic logic: Avicenna and Averroes In Béziau, J Y, & Jacquette, D (Eds.), Around and beyond the square of opposition, (pp. 21–40). Basel: Springer.Google Scholar
  9. 9.
    Chatti, S. (2014). Avicenna on possibility and necessity. History and Philosophy of Logic, 35, 332–353.CrossRefGoogle Scholar
  10. 10.
    Chatti, S., & Schang, F. (2013). The cube, the square and the problem of existential import. History and Philosophy of Logic, 32, 101–132.CrossRefGoogle Scholar
  11. 11.
    Chellas, B.F. (1980). Modal logic. An introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. 12.
    Ciucci, D., Dubois, D, & Prade H (2016). Structures of opposition induced by relations. Annals of Mathematics and Artificial Intelligence, 76, 351–373.CrossRefGoogle Scholar
  13. 13.
    Coecke, B., & Paquette, E.O. (2011). Categories for the practising physicist In Coecke, B. (Ed.), New structures for physics, (pp. 173–286). Berlin: Springer.Google Scholar
  14. 14.
    Czezowski, T. (1955). On certain peculiarities of singular propositions. Mind, 64, 392–395.CrossRefGoogle Scholar
  15. 15.
    Demey, L. (2012). Structures of oppositions for public announcement logic In Béziau, J Y, & Jacquette, D. (Eds.), Around and beyond the square of opposition, (pp. 313–339). Basel: Springer.Google Scholar
  16. 16.
    Demey, L. (2014). Believing in logic and philosophy PhD thesis. Leuven: KU Leuven.Google Scholar
  17. 17.
    Demey, L. (2015). Interactively illustrating the context-sensitivity of Aristotelian diagrams In Christiansen, H., Stojanovic, I., & Papadopoulos, G. (Eds.), Modeling and using context, LNCS (Vol. 9405, pp. 331–345). Berlin: Springer.Google Scholar
  18. 18.
    Demey, L. (2016). The logical geometry of Russell’s theory of definite descriptions. Submitted.Google Scholar
  19. 19.
    Demey, L. (2017). Partitioning logical space. Manuscript.Google Scholar
  20. 20.
    Demey, L., & Smessaert, H. (2014). The relationship between Aristotelian and Hasse diagrams In Dwyer, T., Purchase, H., & Delaney, A. (Eds.), Diagrammatic representation and inference, LNCS (Vol. 8578, pp. 213–227). Berlin: Springer.Google Scholar
  21. 21.
    Demey, L., & Smessaert, H. (2016). Metalogical decorations of logical diagrams. Logica Universalis, 10, 233–292.CrossRefGoogle Scholar
  22. 22.
    Dubois, D., Prade, H., & Rico, A. (2015). The cube of opposition - a structure underlying many knowledge representation formalisms. In Yang, Q., & Wooldridge, M. (Eds.) Proceedings of IJCAI 2015, AAAI press, (pp. 2933–2939).Google Scholar
  23. 23.
    Gerbrandy, J., & Groeneveld, W. (1997). Reasoning about information change. Journal of Logic. Language and Information, 6, 147–169.CrossRefGoogle Scholar
  24. 24.
    Givant, S., & Halmos, P. (2009). Introduction to Boolean algebras. New York: Springer.Google Scholar
  25. 25.
    Grätzer, G. (1978). General lattice theory. New York: Academic Press.CrossRefGoogle Scholar
  26. 26.
    Hartshorne, C., & Weiss, P (Eds.) (1932) Collected papers of Charles Sanders Peirce. Volume II: elements of logic. Cambridge: Harvard University Press.Google Scholar
  27. 27.
    Horn, L.R. (1989). A natural history of negation. Chicago: University of Chicago Press.Google Scholar
  28. 28.
    Hughes, G.E. (1987). The modal logic of John Buridan. In Corsi, G., Mangione, C., & Mugnai, M. (Eds.) Atti del convegno internazionale di storia della logica, le teorie delle modalità, CLUEB, pp 93–111.Google Scholar
  29. 29.
    Jacoby, P. (1950). A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism, 24, 32–56.CrossRefGoogle Scholar
  30. 30.
    Jacquette, D. (2012). Thinking outside the square of opposition box In Béziau, J Y, & Jacquette, D. (Eds.), Around and beyond the square of opposition, (pp. 73–92). Basel: Springer.Google Scholar
  31. 31.
    Jaspers, D. (2012). Logic and colour. Logica Universalis, 6, 227–248.CrossRefGoogle Scholar
  32. 32.
    Keynes, J.N. (1884). Studies and exercises in formal logic. London: MacMillan.Google Scholar
  33. 33.
    Khomskii, Y. (2012). William of Sherwood, singular propositions and the hexagon of opposition In Béziau, J Y, & Payette, G. (Eds.), The square of opposition. A general framework for cognition, (pp. 43–60). Bern: Peter Lang.Google Scholar
  34. 34.
    Kretzmann, N. (1966). William of Sherwood’s introduction to logic. Minneapolis: Minnesota Archive Editions.Google Scholar
  35. 35.
    Landry, E. (1999). Category theory: The language of mathematics. Philosophy of Science, 66, S14–S27.CrossRefGoogle Scholar
  36. 36.
    Lenzen, W. (2012). How to square knowledge and belief In Béziau, J Y, & Jacquette, D. (Eds.), Around and beyond the square of opposition, (pp. 305–311). Basel: Springer.Google Scholar
  37. 37.
    Luzeaux, D., Sallantin, J., & Dartnell, C. (2008). Logical extensions of Aristotle’s square. Logica Universalis, 2, 167–187.CrossRefGoogle Scholar
  38. 38.
    McNamara, P. (2010). Deontic logic In Zalta, E N (Ed.), Stanford encyclopedia of philosophy. Stanford: CSLI.Google Scholar
  39. 39.
    Mélès, B. (2012). No group of opposition for constructive logic: The intuitionistic and linear cases In Béziau, J Y, & Jacquette, D. (Eds.), Around and beyond the square of opposition, (pp. 201–217). Basel: Springer.Google Scholar
  40. 40.
    Mikhail, J. (2007). Universal moral grammar: theory, evidence and the future. Trends in Cognitive Sciences, 11, 143–152.CrossRefGoogle Scholar
  41. 41.
    Moretti, A. (2012). From the “logical square” to the “logical poly-simplexes”. A quick survey of what happened in between In Béziau, J Y, & Payette, G. (Eds.), The square of opposition. A general framework for cognition, (pp. 119–156). Bern: Peter Lang.Google Scholar
  42. 42.
    Moretti, A. (2014). Was Lewis Carroll an amazing oppositional geometer? History and Philosophy of Logic, 35, 383–409.CrossRefGoogle Scholar
  43. 43.
    Parsons, T. (2006). The traditional square of opposition. In Zalta, E. N. (Ed.) Stanford encyclopedia of philosophy. Stanford: CSLI.Google Scholar
  44. 44.
    Peckhaus, V. (2012). Algebra of logic, quantification theory, and the square of opposition. In Béziau, J Y, & Payette, G. (Eds.), The square of opposition. A general framework for cognition, (pp. 25–41). Bern: Peter Lang.Google Scholar
  45. 45.
    Pellissier, R. (2008). Setting n-opposition. Logica Universalis, 2(2), 235—263.CrossRefGoogle Scholar
  46. 46.
    Pierce, B.C. (1991). Basic category theory for computer scientists. Cambridge: MIT press.Google Scholar
  47. 47.
    Plaza, J., Emrich, M.L., Pfeifer, M.S., Hadzikadic, M., & Ras, Z.W. (1989). Logics of public communications, Proceedings of the 4th international symposium on methodologies for intelligent systems, oak ridge national laboratory, oak ridge, TN, pp 201–216 (reprinted in: Synthese 158, 165–179 (p. 2007).Google Scholar
  48. 48.
    Read, S. (2012). John Buridan’s theory of consequence and his octagons of opposition In Béziau, J Y, & Jacquette, D. (Eds.), Around and beyond the square of opposition, (pp. 93–110). Basel : Springer.Google Scholar
  49. 49.
    Roelandt, K. (2016). Most or the Art of Compositionality. Dutch de/het meeste at the Syntax-Semantics Interface. Utrecht: LOT Publications.Google Scholar
  50. 50.
    Schang, F. (2012a). Abstract logic of opposition. Logic and Logical Philosophy, 21, 415–438.Google Scholar
  51. 51.
    Schang, F., Béziau, J Y, & Payette, G. (2012b). Questions and answers about oppositions. Peter Lang: Bern.Google Scholar
  52. 52.
    Sesmat, A. (1951). Logique II. les raisonnements la syllogistique. Paris: Hermann.Google Scholar
  53. 53.
    Seuren, P. (2010). The Logic of Language. Language from Within volume II. Oxford: Oxford University Press.Google Scholar
  54. 54.
    Seuren, P. (2013). From Whorf to Montague. Explorations in the theory of language. Oxford: Oxford University Press.CrossRefGoogle Scholar
  55. 55.
    Seuren, P. (2014). The cognitive ontogenesis of predicate logic. Notre Dame of Journal of Formal Logic, 55, 499–532.CrossRefGoogle Scholar
  56. 56.
    Seuren, P., & Jaspers, D. (2014). Logico-cognitive structure in the lexicon. Language, 90, 607–643.CrossRefGoogle Scholar
  57. 57.
    Smessaert, H. (2009). On the 3D visualisation of logical relations. Logica Universalis, 3, 303– 332.CrossRefGoogle Scholar
  58. 58.
    Smessaert, H. (2012). Boolean differences between two hexagonal extensions of the logical square of oppositions In Cox, P T, Plimmer, B., & Rodgers, P. (Eds.), Diagrammatic representation and inference, LNCS (Vol. 7352, pp. 193–199). Berlin: Springer.Google Scholar
  59. 59.
    Smessaert, H., & Demey, L. (2014a). Logical and geometrical complementarities between Aristotelian diagrams In Dwyer, T., Purchase, H., & Delaney, A. (Eds.), Diagrammatic representation and inference, LNCS (Vol. 8578, pp. 246–260). Berlin: Springer.Google Scholar
  60. 60.
    Smessaert, H., & Demey, L. (2014b). Logical geometries and information in the square of opposition. Journal of Logic Language and Information, 23, 527–565.Google Scholar
  61. 61.
    Smessaert, H., & Demey, L (2015a). Aristotelian diagrams for multi-operator formulas in Avicenna and Buridan. In: CLMPS 2015, Helsinki, talk.Google Scholar
  62. 62.
    Smessaert, H., & Demey, L. (2015b). Béziau’s contributions to the logical geometry of modalities and quantifiers In Koslow, A., & Buchsbaum, A. (Eds.), The road to universal logic, (pp. 475–494). Basel: Springer.Google Scholar
  63. 63.
    Smessaert, H., & Demey, L. (2015c). La géométrie logique du dodécaèdre rhombique des oppositions In Chatti, S. (Ed.), Le carré et ses extensions: Approches théoriques, pratiques et historiques, (pp. 127–157). Tunis: Université de Tunis.Google Scholar
  64. 64.
    Smessaert, H., & Demey, L. (2017). The unreasonable effectiveness of bitstrings in logical geometry In Béziau, J Y, & Basti, G. (Eds.), The square of opposition: a cornerstone of thought. Basel: Springer.Google Scholar
  65. 65.
    van Dalen, D. (2004). Logic and structure, Fourth Edition. Berlin: Springer.CrossRefGoogle Scholar
  66. 66.
    van Ditmarsch, H.P., van der Hoek, W., & Kooi, B.P. (2007). Dynamic epistemic logic. Dordrecht: Springer.CrossRefGoogle Scholar
  67. 67.
    Yao, Y. (2013). Duality in rough set theory based on the square of opposition. Fundamenta Informaticae, 127, 49–64.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Center for Logic and Analytic PhilosophyKU LeuvenLeuvenBelgium
  2. 2.Research Group on Formal and Computational LinguisticsKU LeuvenLeuvenBelgium

Personalised recommendations