Journal of Philosophical Logic

, Volume 46, Issue 3, pp 233–257 | Cite as

Completeness and Decidability of General First-Order Logic (with a Detour Through the Guarded Fragment)

  • Aldo Antonelli
Article

Abstract

This paper investigates the “general” semantics for first-order logic introduced to Antonelli (Review of Symbolic Logic 6(4), 637–58, 2013): a sound and complete axiom system is given, and the satisfiability problem for the general semantics is reduced to the satisfiability of formulas in the Guarded Fragment of Andréka et al. (Journal of Philosophical Logic 27(3):217–274, 1998), thereby showing the former decidable. A truth-tree method is presented in the Appendix.

Keywords

First-order quantifiers Decidability General semantics 

References

  1. 1.
    Andréka, H., Van Benthem, J., & Németi, I. (2017). On a new semantics for first-order predicate logic. Journal of Philosophical Logic. doi:10.1007/s10992-017-9429-y.
  2. 2.
    Andréka, H., Németi, I., & van Benthem, J (1998). Modal languages and bounded fragments of predicate logic. Journal of Philosophical Logic, 27(3), 217–274. doi:10.1023/A:1004275029985.CrossRefGoogle Scholar
  3. 3.
    Antonelli, G.A. (2013). On the general interpretation of first-order quantifiers. Review of Symbolic Logic, 6(4), 637–58. doi:10.1017/S1755020313000270.CrossRefGoogle Scholar
  4. 4.
    Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15(2), 81–91. doi:10.2307/2266967.CrossRefGoogle Scholar
  5. 5.
    Jeffrey, R., & Burgess, J. (2006). Formal logic: its scope and limits. Hackett.Google Scholar
  6. 6.
    Montague, R. (1974). English as a formal language. In Thomason, R. (Ed.) Formal philosophy, Yale University Press, originally published (p. 1969).Google Scholar
  7. 7.
    Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta Mathematicæ, 44, 12–36. http://eudml.org/doc/213418.
  8. 8.
    Peters, S., & Westerståhl, D. (2006). Quantifiers in logic and language: Oxford University Press.Google Scholar
  9. 9.
    Smullyan, R. (1995). First-order logic: Dover.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Aldo Antonelli
    • 1
  1. 1.Department of PhilosophyUniversity of California, DavisDavisUSA

Personalised recommendations