Journal of Philosophical Logic

, Volume 46, Issue 1, pp 27–63 | Cite as

Conditionals in Theories of Truth

Article

Abstract

We argue that distinct conditionals—conditionals that are governed by different logics—are needed to formalize the rules of Truth Introduction and Truth Elimination. We show that revision theory, when enriched with the new conditionals, yields an attractive theory of truth. We go on to compare this theory with one recently proposed by Hartry Field.

Keywords

Truth Paradox Revision theory Conditionals Circular definitions 

References

  1. 1.
    Aczel, P., & Feferman, S. (1980). Consistency of the unrestricted abstraction principle using an intensional equivalence operator In Hindley, R., & Seldin, J. (Eds.), To H.B.Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, (pp. 67–98): Academic Press.Google Scholar
  2. 2.
    Antonelli, A. (1994). The complexity of revision. Notre Dame Journal of Formal Logic, 35(1), 67–72.CrossRefGoogle Scholar
  3. 3.
    Antonelli, A. (2002). The complexity of revision, revised. Notre Dame Journal of Formal Logic, 43(2), 75–78.CrossRefGoogle Scholar
  4. 4.
    Asmus, C.M. (2013). Vagueness and revision sequences. Synthese, 190(6), 953–974.CrossRefGoogle Scholar
  5. 5.
    Bacon, A. (2013). A new conditional for naive truth theory. Notre Dame Journal of Formal Logic, 54(1), 87–104.CrossRefGoogle Scholar
  6. 6.
    Barwise, J., & Etchemendy, J. (1987). The Liar: An Essay on Truth and Circularity: Oxford University Press.Google Scholar
  7. 7.
    Beall, J. (2009). Spandrels of Truth: Oxford University Press.Google Scholar
  8. 8.
    Belnap, N. (1982). Gupta’s rule of revision theory of truth. Journal of Philosophical Logic, 11(1), 103–116.CrossRefGoogle Scholar
  9. 9.
    Belnap Jr., N.D., & Grover, D.L. (1973). Quantifying in and out of quotes In Leblanc, H. (Ed.), Truth, Syntax and Modality, Studies in Logic and the Foundations of Mathematics (Vol. 68, pp. 17–47): Elsevier.Google Scholar
  10. 10.
    Brady, R. (2006). Universal logic: CSLI Publications.Google Scholar
  11. 11.
    Bruni, R. (2013). Analytic calculi for circular concepts by finite revision. Studia Logica, 101(5), 915–932.CrossRefGoogle Scholar
  12. 12.
    Burge, T. (1979). Semantical paradox. Journal of Philosophy, 76(4), 168–198.CrossRefGoogle Scholar
  13. 13.
    Burgess, A.G., & Burgess, J.P. (2011). Truth: Princeton University Press.Google Scholar
  14. 14.
    Burgess, J.P. (1986). The truth is never simple. Journal of Symbolic Logic, 51 (3), 663–681.CrossRefGoogle Scholar
  15. 15.
    Cantini, A. (2009). Paradoxes, self-reference and truth in the 20th century In Gabbay, J. D. (Ed.), Handbook of the History of Logic (Vol. 5, pp. 875–1013): Elsevier.Google Scholar
  16. 16.
    Chapuis, A. (1996). Alternative revision theories of truth. Journal of Philosophical Logic, 25(4), 399–423.CrossRefGoogle Scholar
  17. 17.
    Chihara, C. (1979). The semantic paradoxes: A diagnostic investigation. Philosophical Review, 88(4), 590–618.CrossRefGoogle Scholar
  18. 18.
    Chihara, C.S. (1984). The semantic paradoxes: Some second thoughts. Philosophical Studies, 45(2), 223–229.CrossRefGoogle Scholar
  19. 19.
    Cobreros, P., Egre, P., van Rooij, R., & Ripley, D. (2013). Reaching transparent truth. Mind, 122(488), 841–866.CrossRefGoogle Scholar
  20. 20.
    Dutilh Novaes, C. (2008). A comparative taxonomy of medieval and modern approaches to liar sentences. History and Philosophy of Logic, 29(3), 227–261.CrossRefGoogle Scholar
  21. 21.
    Eklund, M. (2002). Inconsistent languages. Philosophy and Phenomenological Research, 64(2), 251–275.CrossRefGoogle Scholar
  22. 22.
    Feferman, S. (1984). Toward useful type-free theories. I. Journal of Symbolic Logic, 49(1), 75–111.CrossRefGoogle Scholar
  23. 23.
    Field, H. (2008). Saving Truth from Paradox: Oxford University Press.Google Scholar
  24. 24.
    Friedman, H., & Sheard, M. (1987). An axiomatic approach to self-referential truth. Annals of Pure and Applied Logic, 33, 1–21.CrossRefGoogle Scholar
  25. 25.
    Gaifman, H. (1992). Pointers to truth. Journal of Philosophy, 89(5), 223–261.CrossRefGoogle Scholar
  26. 26.
    Gaifman, H. (2000). Pointers to propositions In Chapuis, A., & Gupta, A. (Eds.), Circularity, Definition, and Truth, pp. 79 – 121: Indian Council of Philosophical Research.Google Scholar
  27. 27.
    Glanzberg, M. (2004). A contextual-hierarchical approach to truth and the liar paradox. Journal of Philosophical Logic, 33(1), 27–88.CrossRefGoogle Scholar
  28. 28.
    Gupta, A. (1982). Truth and paradox. Journal of Philosophical Logic, 11(1), 1–60. A revised version, with a brief postscript, is reprinted in [43], pp. 175–235.CrossRefGoogle Scholar
  29. 29.
    Gupta, A. (1988–89). Remarks on definitions and the concept of truth. Proceedings of the Aristotelian Society, 89, 227–246. Reprinted in [33], pp. 73–94.Google Scholar
  30. 30.
    Gupta, A. (1993). A critique of deflationism. Philosophical Topics, 21(2), 57–81. Reprinted with a postscript in [33], pp. 9–52.CrossRefGoogle Scholar
  31. 31.
    Gupta, A. (1997). Definition and revision: A response to McGee and Martin. Philosophical Issues, 8, 419–443. A revised version with a postscript is reprinted as “Definition and Revision” in [33], pp. 135–163.CrossRefGoogle Scholar
  32. 32.
    Gupta, A. (2006). Finite circular definitions In Bolander, T., Hendricks, V.F., & Andersen, S.A. (Eds.), Self-Reference, (pp. 79–93): CSLI Publications.Google Scholar
  33. 33.
    Gupta, A. (2011). Truth, Meaning, Experience: Oxford University Press.Google Scholar
  34. 34.
    Gupta, A., & Belnap, N. (1993). The Revision Theory of Truth: MIT Press.Google Scholar
  35. 35.
    Halbach, V. (2011). Axiomatic Theories of Truth: Cambridge University Press.Google Scholar
  36. 36.
    Herzberger, H.G. (1982). Notes on naive semantics. Journal of Philosophical Logic, 11(1), 61–102. Reprinted in [43], pp. 133–174.CrossRefGoogle Scholar
  37. 37.
    Horsten, L. (2011). The Tarskian Turn: Deflationism and Axiomatic Truth: MIT Press.Google Scholar
  38. 38.
    Kremer, P. (1993). The Gupta-Belnap systems S # and S are not axiomatisable. Notre Dame Journal of Formal Logic, 34(4), 583–596.CrossRefGoogle Scholar
  39. 39.
    Kremer, P. (2010). How truth behaves when there’s no vicious reference. Journal of Philosophical Logic, 39, 345–367. doi:10.1007/s10992-010-9136-4.CrossRefGoogle Scholar
  40. 40.
    Kühnberger, K.U., Löwe, B., Möllerfeld, M., & Welch, P. (2005). Comparing inductive and circular definitions: Parameters, complexity and games. Studia Logica, 81(1), 79–98.CrossRefGoogle Scholar
  41. 41.
    Leitgeb, H. (2007). What theories of truth should be like (but cannot be). Philosophy Compass, 2(2), 276–290.CrossRefGoogle Scholar
  42. 42.
    Löwe, B., & Welch, P. (2001). Set-theoretic absoluteness and the revision theory of truth. Studia Logica, 68(1), 21–41.CrossRefGoogle Scholar
  43. 43.
    Martin, R.L. (1984). Recent Essays on Truth and the Liar Paradox: Oxford University Press.Google Scholar
  44. 44.
    Martinez, M. (2001). Some closure properties of finite definitions. Studia Logica, 68(1), 43–68.CrossRefGoogle Scholar
  45. 45.
    Martínez-Fernández, J. (2007). Maximal three-valued clones with the Gupta-Belnap fixed-point property. Notre Dame Journal of Formal Logic, 48(4), 449–472.CrossRefGoogle Scholar
  46. 46.
    Maudlin, T. (2004). Truth and Paradox: Solving the Riddles: Oxford University Press.Google Scholar
  47. 47.
    McGee, V. (1991). Truth, Vagueness, and Paradox: An Essay on the Logic of Truth: Hackett.Google Scholar
  48. 48.
    McGee, V. (2010). Field’s logic of truth. Philosophical Studies, 147(3), 421–432.CrossRefGoogle Scholar
  49. 49.
    Mendelson, E. (1997). Introduction to Mathematical Logic, 4th edn: Chapman and Hall.Google Scholar
  50. 50.
    Orilia, F. (2000). Property theory and the revision theory of definitions. Journal of Symbolic Logic, 65(1), 212–246.CrossRefGoogle Scholar
  51. 51.
    Parsons, C. (1974). The liar paradox. Journal of Philosophical Logic, 3(4), 381–412.CrossRefGoogle Scholar
  52. 52.
    Patterson, D. (2007). Understanding the liar. In Beall, J. (Ed.) Revenge of the Liar: New Essays on the Paradox (pp. 197–224): Oxford University Press.Google Scholar
  53. 53.
    Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219–241.CrossRefGoogle Scholar
  54. 54.
    Priest, G. (1990). Boolean negation and all that. Journal of Philosophical Logic, 19(2), 201–215.CrossRefGoogle Scholar
  55. 55.
    Priest, G. (2006). In Contradiction: A Study of the Transconsistent, 2nd edn: Oxford University Press.Google Scholar
  56. 56.
    Priest, G. (2010). Hopes fade for saving truth. Philosophy, 85(1), 109–140.CrossRefGoogle Scholar
  57. 57.
    Quine, W.V.O. (1986). Philosophy of Logic, 2nd edn: Harvard University Press.Google Scholar
  58. 58.
    Restall, G. (2006). Minimalists about truth can (and should) be epistemicists, and it helps if they are revision theorists too In Beall, J., & Armour-Garb, B. (Eds.), Deflationism and Paradox (pp. 97–106) : Oxford University Press.Google Scholar
  59. 59.
    Restall, G. (2010). What are we to accept, and what are we to reject, while saving truth from paradox? Philosophical Studies, 147(3), 433–443.CrossRefGoogle Scholar
  60. 60.
    Ripley, D. (2013). Paradoxes and failures of cut. Australasian Journal of Philosophy, 91(1), 139–164.CrossRefGoogle Scholar
  61. 61.
    Ripley, D. (2013). Revising up: Strengthening classical logic in the face of paradox. Philosophers’ Imprint, 13(5).Google Scholar
  62. 62.
    Scharp, K. (2007). Aletheic vengeance. In Beall, J. (Ed.) Revenge of the Liar: New Essays on the Paradox (pp. 272–319):Oxford University Press.Google Scholar
  63. 63.
    Shaw, J.R. (2013). Truth, paradox, and ineffable propositions. Philosophy and Phenomenological Research, 86(1), 64–104.CrossRefGoogle Scholar
  64. 64.
    Simmons, K. (1993). Universality and the Liar: An Essay on Truth and the Diagonal Argument: Cambridge University Press.Google Scholar
  65. 65.
    Skyrms, B. (1984). Intensional aspects of semantical self-reference In Martin, R.L. (Ed.), Recent Essays on Truth and the Liar Paradox (pp. 119–131) : Oxford University Press.Google Scholar
  66. 66.
    Standefer, S. (2013). Truth, semantic closure, and conditionals. Ph.D. thesis, University of Pittsburgh.Google Scholar
  67. 67.
    Standefer, S. (2015). On artifacts and truth-preservation. Australasian Journal of Logic, 12(3), 135–158. http://ojs.victoria.ac.nz/ajl/article/view/2045.Google Scholar
  68. 68.
    Standefer, S. (2015). Solovay-type theorems for circular definitions. Review of Symbolic Logic, 8(03), 467–487.CrossRefGoogle Scholar
  69. 69.
    Tarski, A. Der wahrheitsbegriff in den formalisierten sprachen. Studia Philosophica, 1, 261–405. (1935/1983). An English translation by J. H. Woodger appears in [71] under the title “The concept of truth in formalized languages”; for full bibliographic information see the note on p. 152 of [71].Google Scholar
  70. 70.
    Tarski, A. (1944). The semantic conception of truth. Philosophy and Phenomenological Research, 4(3), 341–376.CrossRefGoogle Scholar
  71. 71.
    Tarski, A. (1983). Logic, Semantics, Metamathematics: Hackett.Google Scholar
  72. 72.
    Visser, A. (1984). Four-valued semantics and the liar. Journal of Philosophical Logic, 13(2), 181–212.CrossRefGoogle Scholar
  73. 73.
    Visser, A. (2004). Semantics and the liar paradox In Gabbay, D., & Guethner, F. (Eds.), Handbook of Philosophical Logic, vol. 11, 2nd edn., (pp. 149–240) : Springer.Google Scholar
  74. 74.
    Welch, P.D. (2001). On Gupta-Belnap revision theories of truth, Kripkean fixed points, and the next stable set. Bulletin of Symbolic Logic, 7(3), 345–360.CrossRefGoogle Scholar
  75. 75.
    Welch, P.D. (2008). Ultimate truth vis-à-vis stable truth. Review of Symbolic Logic, 1(01), 126–142.CrossRefGoogle Scholar
  76. 76.
    Wintein, S. (2014). Alternative ways for truth to behave when there’s no vicious reference. Journal of Philosophical Logic, 43(4), 665–690. doi:10.1007/s10992-013-9285-3.
  77. 77.
    Woodruff, P.W. (1984). Paradox, truth and logic. Journal of Philosophical Logic, 13(2), 213–232.Google Scholar
  78. 78.
    Yablo, S. (2003). New grounds for naive truth theory In Beall, J. (Ed.), Liars and Heaps: New Essays on Paradox, (pp. 312–330): Oxford University Press.Google Scholar
  79. 79.
    Yaqūb, A.M. (1993). The Liar Speaks the Truth: A Defense of the Revision Theory of Truth: Oxford University Press.Google Scholar
  80. 80.
    Yaqūb, A.M. (2008). Two types of deflationism. Synthese, 165(1), 77–106.CrossRefGoogle Scholar
  81. 81.
    Zardini, E. (2011). Truth without contra(di)ction. The Review of Symbolic Logic, 4(04), 498–535. doi:10.1017/S1755020311000177.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of PittsburghPittsburghUSA
  2. 2.University of MelbourneParkvilleAustralia

Personalised recommendations