Baaz, M., & Fermüller, C.G. (1996). Intuitionistic counterparts of finitely-valued logics. In Proceedings of 26rd international symposium on multiple-valued logic (pp. 136–141). Los Alamitos: IEEE Press. doi:10.1109/ISMVL.1996.508349.
Baaz, M., Fermüller, C.G., & Zach, R. (1993). Systematic construction of natural deduction systems for many-valued logics. In Proceedings of 23rd international symposium on multiple-valued logic (208–213). Los Alamitos: IEEE Press. doi:10.1109/ISMVL.1993.289558.
Baaz, M., Fermüller, C.G., & Zach, R. (1994). Elimination of cuts in first-order finite-valued logics. Journal of Information Processing and Cybernetics EIK, 29(6), 333–355. http://ucalgary.ca/rzach/papers/mvlcutel.html.
Google Scholar
Fitch, F. (1952). Symbolic Logic: An introduction. New York: Ronald.
Google Scholar
Gentzen, G. (1934). Untersuchungen über das logische Schließen I–II. Math Z, 39, 176–210,405–431.
Article
Google Scholar
Harrop, R. (1960). Concerning formulas of the types A → B ∨ C, A → (E
x)B(x). Journal of Symbolic Logic, 25(1), 27–32. http://www.jstor.org/stable/2964334.
Article
Google Scholar
Hazen, A.P., & Pelletier, F.J. (2014). Gentzen and Jaśkowski natural deduction: fundamentally similar but importantly different. Studia Logica, 102(6), 1103–1142. doi:10.1007/s11225-014-9564-1.
Article
Google Scholar
van Heijenoort, J. (Ed.) (1967). From Frege to Gödel. A source book in mathematical logic (1879–1931). Cambridge: Harvard University Press.
Google Scholar
Jaśkowski, S. (1934). On the rules of suppositions in formal logic. No. 1 in Studia Logica, Seminarjum Filozoficzne. Wydz. Matematyczno-Przyrodniczy UW, Warsaw, reprinted in (McCall 1967, 232–258).
Lemmon, E.J. (1965). Beginning logic. London: Nelson.
Google Scholar
McCall, S. (Ed.) (1967). Polish logic 1920–1939. London: Oxford University Press.
Google Scholar
Parigot, M. (1992a). Free deduction: an analysis of “computations” in classical logic. In A. Voronkov (Ed.), Logic programming, Lecture Notes in Computer Science (Vol. 592 pp. 361–380). Berlin: Springer. doi:10.1007/3-540-55460-2_27.
Parigot, M. (1992b). λ
μ-Calculus: an algorithmic interpretation of classical natural deduction. In Proceedings LPAR’92 logic programming and automated reasoning, LNAI 624 (pp. 190–201). Berlin: Springer. doi:10.1007/BFb0013061.
von Plato, J. (2001). Natural deduction with general elimination rules. Archive for Mathematical Logic, 40(7), 541–567. doi:10.1007/s001530100091.
Article
Google Scholar
Prawitz, D. (1965). Natural deduction. Stockholm studies in philosophy 3. Stockholm: Almqvist & Wiksell.
Price, R. (1961). The stroke function and natural deduction. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 7, 117–123.
Article
Google Scholar
Read, S. (1999). Sheffer’s stroke: a study in proof-theoretic harmony. Danish Yearbook of Philosophy, 34, 7–23.
Google Scholar
Schönfinkel, M. (1924). Über die Bausteine der mathematischen logik. Mathematische Annalen, 92, 305–316. English translation in (van Heijenoort 1967, pp. 355–366).
Article
Google Scholar
Suppes, P. (1957). Introduction to logic. New York: Van Nostrand Reinhold.
Google Scholar
Takeuti, G. (1987). Proof theory, 2nd edn. Studies in logic 81. Amsterdam: North-Holland.
Troelstra, A.S., & Schwichtenberg, H. (2000). Basic proof theory, 2nd edn. Cambridge: Cambridge University Press.
Book
Google Scholar
Zach, R. (1993). Proof theory of finite-valued logics. Diplomarbeit, Technische Universität Wien, Vienna. http://ucalgary.ca/rzach/papers/ptmvl.html.