Journal of Philosophical Logic

, Volume 42, Issue 6, pp 863–904 | Cite as

On the Epistemic Foundation for Iterated Weak Dominance: An Analysis in a Logic of Individual and Collective attitudes

  • Emiliano Lorini


This paper proposes a logical framework for representing static and dynamic properties of different kinds of individual and collective attitudes. A complete axiomatization as well as a decidability result for the logic are given. The logic is applied to game theory by providing a formal analysis of the epistemic conditions of iterated deletion of weakly dominated strategies (IDWDS), or iterated weak dominance for short. The main difference between the analysis of the epistemic conditions of iterated weak dominance given in this paper and other analysis is that we use a semi-qualitative approach to uncertainty based on the notion of plausibility first introduced by Spohn, whereas other analysis are based on a quantitative representation of uncertainty in terms of probabilities.


Epistemic logic Epistemic game theory Belief revision Iterated weak dominance 


  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D. (1985). On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510–530.CrossRefGoogle Scholar
  2. 2.
    Asheim, G., & Dufwenberg, M. (2003). Admissibility and common belief. Games and Economic Behavior, 42, 208–234.CrossRefGoogle Scholar
  3. 3.
    Asheim, G., & Søvik, Y. (2005). Preference-based belief operators. Mathematical Social Sciences, 50, 61–82.CrossRefGoogle Scholar
  4. 4.
    Asheim, G.B. (2001). Proper rationalizability in lexicographic beliefs. International Journal of Game Theory, 30, 453–478.CrossRefGoogle Scholar
  5. 5.
    Aucher, G. (2005). A combined system for upyear logic and belief revision. In Proceedings of PRIMA 2004 of LNAI (Vol. 3371, pp. 1–18). Springer-Verlag.Google Scholar
  6. 6.
    Aumann, R. (1999). Interactive epistemology, I. knowledge. International Journal of Game Theory, 28(3), 263–300.CrossRefGoogle Scholar
  7. 7.
    Baltag, A., Moss, L., Solecki, S. (1998). The logic of public announcements, common knowledge and private suspicions. In Proceedings of TARK’98 (pp. 43–56). Morgan Kaufmann.Google Scholar
  8. 8.
    Baltag, A., & Moss, L.S. (2004). Logics for epistemic programs. Synthese, 139(2), 165–224.CrossRefGoogle Scholar
  9. 9.
    Baltag, A., & Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. In Proceedings of LOFT 7, texts in logic and games (Vol. 3, pp. 13–60). Amsterdam University Press.Google Scholar
  10. 10.
    Baltag, A., & Smets, S. (2009). Talking your way into agreement: belief merge by persuasive communication. In Proceedings of the second multi-agent logics, languages, and organisations federated workshops (MALLOW), CEUR workshop proceedings (Vol. 494). Scholar
  11. 11.
    Baltag, A., Smets, S., Zvesper, J.A. (2009). Keep ‘hoping’ for rationality: a solution to the backward induction paradox. Synthese, 169(2), 301–333.CrossRefGoogle Scholar
  12. 12.
    Battigalli, P., & Siniscalchi, M. (2002). Strong belief and forward induction reasoning. Journal of Economic Theory, 106(2), 356–391.CrossRefGoogle Scholar
  13. 13.
    Bernheim, D. (1986). Axiomatic characterizations of rational choice in strategic environments. Scandinavian Journal of Economics, 88, 473–488.CrossRefGoogle Scholar
  14. 14.
    Blume, L.E., Brandenburger, A., Dekel, E. (1991). Lexicographic probabilities and choice under uncertainty. Econometrica, 59, 61–79.CrossRefGoogle Scholar
  15. 15.
    Board, O. (1998). Belief revision and rationalizability. In Proceedings of TARK’98 (pp. 201–213). Morgan Kaufmann.Google Scholar
  16. 16.
    Board, O. (2002). Knowledge, beliefs, and game-theoretic solution concepts. Oxford Review of Economic Policy, 18, 418–432.CrossRefGoogle Scholar
  17. 17.
    Bonanno, G. (2008). A syntactic approach to rationality in games with ordinal payoffs. In Proceedings of LOFT 2008, texts in logic and games series (pp. 59–86). Amsterdam University Press.Google Scholar
  18. 18.
    Börgers, T. (1994). Weak dominance and approximate common knowledge. Journal of Economic Theory, 64, 265–276.CrossRefGoogle Scholar
  19. 19.
    Börgers, T., & Samuelson, L. (1992). Cautious utility maximization and iterated weak dominance. International Journal of Game Theory, 21, 13–25.CrossRefGoogle Scholar
  20. 20.
    Brandeburger, A. (2007). The power of paradox: some recent developments in interactive epistemology. International Journal of Game Theory, 35(4), 465–492.CrossRefGoogle Scholar
  21. 21.
    Brandeburger, A., & Dekel, E. (1987). Rationalizability and correlated equilibria. Econometrica, 55, 1391–1402.CrossRefGoogle Scholar
  22. 22.
    Brandenburger, A. (1992). Lexicographic probabilities and iterated admissibility. In P. Dasgupta, D. Gale, O. Hart, E. Maskin (Eds.), Economic analysis of markets and games (pp. 282–290). MIT Press.Google Scholar
  23. 23.
    Brandenburger, A., Friedenberg, A., Keisler, J. (2008). Admissibility in games. Econometrica, 76, 307–352.Google Scholar
  24. 24.
    Dekel, E., & Fudenberg, D. (1990). Rational behavior with payoff uncertainty. Journal of Economic Theory, 52, 243–267.CrossRefGoogle Scholar
  25. 25.
    Dubois, D., & Prade, H. (1998). Possibility theory: qualitative and quantitative aspects. In D. Gabbay & P. Smets (Eds.), Handbook of defeasible reasoning and uncertainty management systems (Vol. 1, pp. 169–226). Kluwer.Google Scholar
  26. 26.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M. (1995). Reasoning about knowledge. Cambridge: MIT Press.Google Scholar
  27. 27.
    Gärdenfors, P., & Makinson, D. (1988). Revisions of knowledge systems using epistemic entrenchment. In M.Y. Vardi, (Ed.), Proceedings of TARK 1988 (pp. 83–95). Morgan Kaufmann.Google Scholar
  28. 28.
    Goldszmidt, M., & Pearl, J. (1996). Qualitative probability for default reasoning, belief revision and causal modeling. Artificial Intelligence, 84, 52–112.CrossRefGoogle Scholar
  29. 29.
    Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170.CrossRefGoogle Scholar
  30. 30.
    Halpern, J.Y. (2011). Beyond nash equilibrium: solution concepts for the 21st century. In K.R. Apt & E. Gradel (Eds.), Lectures in game theory for computer scientists (pp. 264–1278).Google Scholar
  31. 31.
    Halpern, J.Y., & Lakemeyer, G. (2001). Multi-agent only knowing. Journal of Logic and Computation, 11(1), 41–70.CrossRefGoogle Scholar
  32. 32.
    Halpern, J.Y., & Pass, R. (2009). A logical characterization of iterated admissibility. In A. Heifetz (Ed.), Proceedings of TARK 2009 (pp. 146–155).Google Scholar
  33. 33.
    Harel, D., Kozen, D., Tiuryn, J. (2000). Dynamic logic: MIT Press.Google Scholar
  34. 34.
    Klein, P.D. (1971). A proposed definition of propositional knowledge. Journal of Philosophy, 68, 471–482.CrossRefGoogle Scholar
  35. 35.
    Laverny, N., & Lang, J. (2005). From knowledge-based programs to graded belief-based programs, part II: off-line reasoning. In Proceedings of IJCAI’05 (pp. 497–502).Google Scholar
  36. 36.
    Lehrer, K., & Paxton, T. (1969). Undefeated justified true belief. Journal of Philosophy, 66, 225–237.CrossRefGoogle Scholar
  37. 37.
    Lorini, E., & Schwarzentruber, F. (2010). A modal logic of epistemic games. Games, 1(4), 478–526.CrossRefGoogle Scholar
  38. 38.
    Mas-Colell, M., Winston, A., Green J. (1995). Microeconomic theory. New York: Oxford University Press.Google Scholar
  39. 39.
    Monderer, D., & Samet, D. (1989). Approximating common knowledge with common beliefs. Games and Economic Behavior, 1, 170–190.CrossRefGoogle Scholar
  40. 40.
    Pearce, D. (1984). Rationalizable strategic behavior and the problem of perfection. Econometrica, 52, 1029–1050.CrossRefGoogle Scholar
  41. 41.
    Pearl, J. (1993). From conditional oughts to qualitative decision theory. In D. Heckerman & E.H. Mamdani (Eds.), Proceedings of UAI’93 (pp. 12–22). Morgan Kaufmann.Google Scholar
  42. 42.
    Perea, A. (2012). Epistemic game theory: reasoning and choice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. 43.
    Rott, H. (2004). Stability, strength and sensitivity: converting belief into knowledge. Erkenntnis, 61, 469–493.CrossRefGoogle Scholar
  44. 44.
    Samuelson, L. (1992). Dominated strategies and common knowledge. Games and Economic Behavior, 4, 284–313.CrossRefGoogle Scholar
  45. 45.
    Spohn W (1988). Ordinal conditional functions: a dynamic theory of epistemic states. In W.L. Harper & B. Skyrms (Eds.), Causation in decision, belief change and statistics (pp. 105–134). Kluwer.Google Scholar
  46. 46.
    Stalnaker, R. (1994). On the evaluation of solution concepts. Theory and Decision, 37, 49–73.CrossRefGoogle Scholar
  47. 47.
    Stalnaker, R. (1996). Knowledge, belief and counterfactual reasoning in games. Economics and Philosophy, 12, 133–163.CrossRefGoogle Scholar
  48. 48.
    Stalnaker, R. (1998). Belief revision in games: forward and backward induction. Mathematical Social Sciences, 36, 31–56.CrossRefGoogle Scholar
  49. 49.
    Stalnaker, R. (2006). On logics of knowledge and belief. Philosophical Studies, 128, 169–199.CrossRefGoogle Scholar
  50. 50.
    Tan, T., & Werlang, S. (1988). The bayesian foundation of solution concepts of games. Journal of Economic Theory, 45, 370–391.CrossRefGoogle Scholar
  51. 51.
    van Benthem, J. (2007). Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17, 129–155.CrossRefGoogle Scholar
  52. 52.
    van Benthem, J. (2007). Rational dynamics and epistemic logic in games. International Game Theory Review, 9(1), 13–45.CrossRefGoogle Scholar
  53. 53.
    van Benthem, J., van Eijck, J., Kooi, B. (2006). Logics of communication and change. Information and Computation, 204(11), 1620–1662.CrossRefGoogle Scholar
  54. 54.
    van Ditmarsch, H. (2005). Prolegomena to dynamic logic for belief revision. Synthese, 147(2), 229–275.CrossRefGoogle Scholar
  55. 55.
    Weydert, E. (1994). General belief measures. In R.L. de Mántaras & D. Poole (Eds.), Proceedings of UAI’94 (pp. 575–582). Morgan Kaufmann.Google Scholar
  56. 56.
    Zvesper, J.A. (2010). Playing with information PhD thesis, The Netherlands: University of Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.IRIT-CNRSToulouseFrance

Personalised recommendations