Journal of Philosophical Logic

, Volume 43, Issue 2–3, pp 393–437 | Cite as

CIFOL: Case-Intensional First Order Logic

(I) Toward a Theory of Sorts
Open Access
Article

Abstract

This is part I of a two-part essay introducing case-intensional first order logic (CIFOL), an easy-to-use, uniform, powerful, and useful combination of first-order logic with modal logic resulting from philosophical and technical modifications of Bressan’s General interpreted modal calculus (Yale University Press 1972). CIFOL starts with a set of cases; each expression has an extension in each case and an intension, which is the function from the cases to the respective case-relative extensions. Predication is intensional; identity is extensional. Definite descriptions are context-independent terms, and lambda-predicates and -operators can be introduced without constraints. These logical resources allow one to define, within CIFOL, important properties of properties, viz., extensionality (whether the property applies, depends only on an extension in one case) and absoluteness, Bressan’s chief innovation that allows tracing an individual across cases without recourse to any notion of “rigid designation” or “trans-world identity.” Thereby CIFOL abstains from incorporating any metaphysical principles into the quantificational machinery, unlike extant frameworks of quantified modal logic. We claim that this neutrality makes CIFOL a useful tool for discussing both metaphysical and scientific arguments involving modality and quantification, and we illustrate by discussing in diagrammatic detail a number of such arguments involving the extensional identification of individuals via absolute (substance) properties, essential properties, de re vs. de dicto, and the results of possible tests.

Keywords

Modal logic Quantification Sortal Tracing Substance 

References

  1. 1.
    Bacon, J. (1980). Substance and first-order quantification over individual-concepts. Journal of Symbolic Logic, 45(2), 193–203.CrossRefGoogle Scholar
  2. 2.
    Barcan, R. (1947). The identity of individuals in a strict functional calculus of second order. Journal of Symbolic Logic, 12, 12–15.CrossRefGoogle Scholar
  3. 3.
    Belnap, N. (2006). Bressan’s type-theoretical combination of quantification and modality. In H. Lagerlund, S. Lindström, R. Sliwinski (Eds.), Modality matters: Twenty-five essays in honour of Krister Segerberg (pp. 31–53). Uppsala: Uppsala Philosophical Studies, Vol. 53, Uppsala University.Google Scholar
  4. 4.
    Belnap, N. (2013). Internalizing case-relative truth in CIFOL. In T. Müller (Ed.), Nuel Belnap’s work on indeterminism and free action. Berlin: Springer (forthcoming).Google Scholar
  5. 5.
    Belnap, N., & Müller, T. (2012). BH-CIFOL: Case-intensional first order logic. (II) Branching histories (forthcoming).Google Scholar
  6. 6.
    Bressan, A. (1972). A general interpreted modal calculus. New Haven, CT: Yale University Press.Google Scholar
  7. 7.
    Bressan, A. (1973). The interpreted type-free modal calculus MC . Rendiconti del Seminario Matematico della Università di Padova, 49, 157–194.Google Scholar
  8. 8.
    Bugno, M., Słota, E., Pieńkowska-Schelling, A., Schelling, C., et al. (2009). Identification of chromosome abnormalities in the horse using a panel of chromosome-specific painting probes generated by microdissection. Acta Veterinaria Hungarica, 57(3), 369.CrossRefGoogle Scholar
  9. 9.
    Butterfield, J. (2006). Against pointillisme about mechanics. British Journal for the Philosophy of Science, 57(4), 709–753.CrossRefGoogle Scholar
  10. 10.
    Carnap, R. (1947). Meaning and necessity: A study in semantics and modal logic. Chicago, IL: University of Chicago Press. Enlarged edition, 1956.Google Scholar
  11. 11.
    Dummett, M. (1973). Frege: Philosophy of language. London: Duckworth.Google Scholar
  12. 12.
    Fitting, M.C. (2004). First-order intensional logic. Annals of Pure and Applied Logic, 127, 171–193.CrossRefGoogle Scholar
  13. 13.
    Fitting, M.C. (2011). Intensional logic. In E.N. Zalta (Ed.), The Stanford encyclopedia of philosophy (winter 2011 edn.). http://plato.stanford.edu/archives/win2011/entries/logic-intensional/.
  14. 14.
    Gallin, D. (1975). Intensional and higher-order modal logic: With applications to Montague semantics. Mathematical studies (Vol. 19). Amsterdam: North Holland.Google Scholar
  15. 15.
    Garson, J. (2005). Unifying quantified modal logic. Journal of Philosophical Logic, 34, 621–649.CrossRefGoogle Scholar
  16. 16.
    Geach, P.T. (1962). Reference and generality: An examination of some medieval and modern theories. Ithaca, NY: Cornell University Press.Google Scholar
  17. 17.
    Gibbard, A. (1975). Contingent identity. Journal of Philosophical Logic, 4, 187–221.CrossRefGoogle Scholar
  18. 18.
    Gupta, A. (1980). The logic of common nouns: An investigation in quantified modal logic. New Haven, CT: Yale University Press.Google Scholar
  19. 19.
    Hughes, G.E., & Cresswell, M.J. (1996). An new introduction to modal logic. London: Routledge.CrossRefGoogle Scholar
  20. 20.
    Kishida, K. (2010). Generalized topological semantics for first-order modal logic. Ph.D. thesis, University of Pittsburgh.Google Scholar
  21. 21.
    Kripke, S. (1959). A completeness theorem in modal logic. The Journal of Symbolic Logic, 24, 1–15.CrossRefGoogle Scholar
  22. 22.
    Kripke, S. (1963). Semantical considerations in modal logic. Acta Philosophica Fennica, 16, 83–94.Google Scholar
  23. 23.
    Lewis, D.K. (1968). Counterpart theory and quantified modal logic. Journal of Philosophy, 65(5), 113–126.CrossRefGoogle Scholar
  24. 24.
    Lowe, E.J. (2009). More kinds of being. Oxford: Blackwell.Google Scholar
  25. 25.
    Montague, R. (1973). The proper treatment of quantification in ordinary English. In J. Hintikka, J. Moravcsik, P. Suppes (Eds.), Approaches to natural language: Proceedings of the 1970 Stanford workshop on grammar and semantics (pp. 221–242). Dordrecht: D. Reidel. Reprinted as Chap. 8 of Montague, R. (1974). Formal philosophy: Selected papers of Richard Montague. New Haven, CT: Yale University Press. Edited and with an introduction by R.H. Thomason.Google Scholar
  26. 26.
    Muskens, R. (2007). Higher-order modal logic. In P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of modal logic (pp. 621–654). Amsterdam: Elsevier.CrossRefGoogle Scholar
  27. 27.
    Parks, Z. (1972). Classes and change. Journal of Philosophical Logic, 1, 162–169.CrossRefGoogle Scholar
  28. 28.
    Quine, W. (1960). Word and object. Cambridge, MA: MIT Press.Google Scholar
  29. 29.
    Sider, T. (2000). The stage view and temporary intrinsics. Analysis, 60, 84–88.CrossRefGoogle Scholar
  30. 30.
    Suppes, P. (1957). Introduction to logic. Princeton: D. van Nostrand.Google Scholar
  31. 31.
    Thomason, R.H. (1969). Modal logic and metaphysics. In K. Lambert (Ed.), The logical way of doing things (pp. 119–146). New Haven, CT: Yale University Press.Google Scholar
  32. 32.
    Thomason, R.H. (1970). Indeterminist time and truth-value gaps. Theoria, 36, 264–281.CrossRefGoogle Scholar
  33. 33.
    Tichý, P. (1988). The foundations of Frege’s logic. Berlin: De Gruyter.CrossRefGoogle Scholar
  34. 34.
    Van Leeuwen, J. (1991). Individuals and sortal concepts. An essay in logical descriptive metaphysics. Ph.D. thesis, Universiteit van Amsterdam.Google Scholar
  35. 35.
    Wiggins, D. (2001). Sameness and substance renewed. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. 36.
    Williamson, T. (2013). Barcan formulas in second-order modal logic. In M. Frauchiger (Ed.), Themes from Barcan Marcus, Lauener Library of Analytical Philosophy (Vol. 3, pp. 1–31). Frankfurt: Ontos Verlag.Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of PittsburghPittsburghUSA
  2. 2.Department of PhilosophyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations