Advertisement

Dual Equivalent Two-valued Under-determined and Over-determined Interpretations for Łukasiewicz’s 3-valued Logic Ł3

Abstract

Łukasiewicz three-valued logic Ł3 is often understood as the set of all 3-valued valid formulas according to Łukasiewicz’s 3-valued matrices. Following Wojcicki, in addition, we shall consider two alternative interpretations of Ł3: “well-determined” Ł3a and “truth-preserving” Ł3b defined by two different consequence relations on the 3-valued matrices. The aim of this paper is to provide (by using Dunn semantics) dual equivalent two-valued under-determined and over-determined interpretations for Ł3, Ł3a and Ł3b. The logic Ł3 is axiomatized as an extension of Routley and Meyer’s basic positive logic following Brady’s strategy for axiomatizing many-valued logics by employing two-valued under-determined or over-determined interpretations. Finally, it is proved that “well determined” Łukasiewicz logics are paraconsistent.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

References

  1. 1

    Avron, A. (1991). Natural 3-valued logics. characterization and proof theory. Journal of Symbolic Logic, 56, 276–294.

  2. 2

    Baaz, M., & Zach, R. (1998). Compact propositional Gӧdel logics. In 28th international symposium on multiple-valued logic proceedings, (pp. 108–113). Fukuoka, Japan.

  3. 3

    Baaz, M., Preining, N., Zach, R. (2007). First-order Gödel logics. Annals of Pure and Applied Logic, 147, 23–47.

  4. 4

    Bimbó, K., & Dunn, J.M. (2008). Generalized Galois logics. Relational semantics of non-classical logic calculi. Stanford, CA: CSLI Publications.

  5. 5

    Brady, R. (1982). Completeness proofs for the systems RM3 and BN4. Logique et Analyse, 25, 9–32.

  6. 6

    Brady, R. (Ed.) (2003). Relevant logics and their rivals, Vol. II. Ashgate.

  7. 7

    Carnielli, W., Coniglio, M., Marcos, J. (2007). Logics of formal inconsistency In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 14, pp. 1–93). Dordrecht: Kluwer Academic Publishers.

  8. 8

    Dunn, J.M. (1966). The algebra of intensional logics. Doctoral dissertation, University of Pittsburg (Ann Arbor, University Microfilms).

  9. 9

    Dunn, J.M. (1976). Intuitive semantics for first-degree entailments and ‘coupled trees’. Philosophical Studies, 29, 149–168.

  10. 10

    Dunn, J.M. (2000). Partiality and its dual. Studia Logica, 65, 5–40.

  11. 11

    Gabbay, D., & Guenthner, F. (2001). Handbook of philosophical logic, 2nd edn. Dordrecht: Kluwer Academic Publishers.

  12. 12

    González, C. (2012). MaTest. Available at http://ceguel.es/matest. Last access 26 November 2012.

  13. 13

    Hähnle, R. (2002). Advanced many-valued logics. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 2, pp. 297–395). Dordrecht: Kluwer Academic Publishers.

  14. 14

    Karpenko, A.S. (2006). Łukasiewicz logics and prime numbers. Beckington: Luniver Press.

  15. 15

    Łukasiewicz, J. (1920). On three-valued logic. In J. Łukasiewicz (1970) (pp. 87–88).

  16. 16

    Łukasiewicz, J. (1970). Selected works. Amsterdam: North-Holland.

  17. 17

    Łukasiewicz, J., & Tarski, A. (1930). Investigations into the sentential calculus. In Łukasiewicz (1970) (pp. 131–152).

  18. 18

    Malinowski, G. (1993). Many-valued logics. Oxford: Clarendon Press.

  19. 19

    McCall, S. (1967). Polish logic: 1920–1939. London, UK: Oxford University Press.

  20. 20

    Meyer, R.K., & Routley, R. (1972). Algebraic analysis of entailment I. Logique et Analyse, 15, 407–428.

  21. 21

    Priest, G. (2002). Paraconsistent logic. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 6, pp. 287–393). Dordrecht: Kluwer Academic Publishers.

  22. 22

    Robles, G., & Méndez, J.M. (2008). The basic constructive logic for a weak sense of consistency. Journal of Logic Language and Information, 17(1), 89–107.

  23. 23

    Robles, G., & Méndez, J.M. A Routley–Meyer semantics for truth-preserving and well-determined Łukasiewicz’s 3-valued logics (Manuscript).

  24. 24

    Rose, A., & Rosser, J.B. (1958). Fragments of many-valued statement calculi. Transactions of the American Mathematical Society, 87, 1–53.

  25. 25

    Routley, R., & Meyer, R.K. (1972). Semantics of entailment III. Journal of Philosophical Logic, 1, 192–208.

  26. 26

    Routley, R., & Routley, V. (1972). Semantics of first-degree entailment. Noûs, 1, 335–359.

  27. 27

    Routley, R., Meyer, R.K., Plumwood, V., Brady R.T. (1982). Relevant logics and their rivals (Vol. 1). Atascadero, CA: Ridgeview Publishing Co.

  28. 28

    Slaney, J. (1995). MaGIC, matrix generator for implication connectives: version 2.1, notes and guide. Canberra: Australian National University. URL: http://users.rsise.anu.edu.au/~jks.

  29. 29

    Suszko, R. (1975). Remarks on Łukasiewicz’s three-valued logics. Bulletin of the Section of Logic, 4, 87–90.

  30. 30

    Tokarz, M. (1974). A method of axiomatization of Łukasiewicz logics. Studia Logica, 33, 333–338.

  31. 31

    Tsuji, M. (1998). Many-valued logic and Suszko thesis revisited. Studia Logica, 60, 299–309.

  32. 32

    Tuziak, R. (1988). An axiomatization of the finite-valued Łukasiewicz calculus. Studia Logica, 47, 49–55.

  33. 33

    Urquhart, A. (2002). Basic many-valued logic. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 2, pp. 249–295). Dordrecht: Kluwer Academic Publishers.

  34. 34

    Van Fraasen, B. (1969). Facts and tautological entailments. The Journal of Philosophy, 67, 477–487.

  35. 35

    Wajsberg, M. (1931). Axiomatization of the 3-valued propositional calculus. In S. McCall (1967) (pp. 264–284)..

  36. 36

    Wojcicki, R. (1974). The logics stronger than Łukasiewicz’z three-valued sentential calculus—the notion of degree of maximality versus the notion of degree of completeness. Studia Logica, 33, 201–214.

  37. 37

    Wojcicki, R. (1984). Lectures on Propositional Calculi. Ossolineum.

Download references

Author information

Correspondence to Gemma Robles.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Robles, G., Salto, F. & Méndez, J.M. Dual Equivalent Two-valued Under-determined and Over-determined Interpretations for Łukasiewicz’s 3-valued Logic Ł3. J Philos Logic 43, 303–332 (2014) doi:10.1007/s10992-012-9264-0

Download citation

Keywords

  • Many-valued logic
  • Łukasiewicz 3-valued logic
  • Two-valued under-determined and over-determined interpretations
  • Paraconsistent logics