Journal of Philosophical Logic

, Volume 41, Issue 4, pp 711–733 | Cite as

A General Family of Preferential Belief Removal Operators

  • Richard BoothEmail author
  • Thomas Meyer
  • Chattrakul Sombattheera


Most belief change operators in the AGM tradition assume an underlying plausibility ordering over the possible worlds which is transitive and complete. A unifying structure for these operators, based on supplementing the plausibility ordering with a second, guiding, relation over the worlds was presented in Booth et al. (Artif Intell 174:1339–1368, 2010). However it is not always reasonable to assume completeness of the underlying ordering. In this paper we generalise the structure of Booth et al. (Artif Intell 174:1339–1368, 2010) to allow incomparabilities between worlds. We axiomatise the resulting class of belief removal functions, and show that it includes an important family of removal functions based on finite prioritised belief bases.


Belief revision Belief removal Belief contraction Belief change Plausibility orderings Finite belief bases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510–530.CrossRefGoogle Scholar
  2. 2.
    Arló Costa, H. (2006). Rationality and value: The epistemological role of indeterminate and agent-dependent values. Philosophical Studies, 128(1), 7–48.CrossRefGoogle Scholar
  3. 3.
    Benferhat, S., Cayrol, C., Dubois, D., Lang, J., & Prade, H. (1993). Inconsistency management and prioritized syntax-based entailment. In Proceedings of IJCAI (pp. 640–647).Google Scholar
  4. 4.
    Benferhat, S., Lagrue, S., & Papini, O. (2005). Revision of partially ordered information: Axiomatization, semantics and iteration. In Proceedings of IJCAI (pp. 376–381).Google Scholar
  5. 5.
    Bochman, A. (2001). A logical theory of nonmonotonic inference and belief change. New York: Springer.Google Scholar
  6. 6.
    Booth, R., Chopra, S., Ghose, A., & Meyer, T. (2005). Belief liberation (and retraction). Studia Logica, 79(1), 47–72.CrossRefGoogle Scholar
  7. 7.
    Booth, R., Chopra, S., Meyer, T., & Ghose, A. (2010). Double preference relations for generalised belief change. Artificial Intelligence, 174, 1339–1368.CrossRefGoogle Scholar
  8. 8.
    Booth, R., & Meyer, T. (2010). Equilibria in social belief removal. Synthese, 177, 97–123.CrossRefGoogle Scholar
  9. 9.
    Brewka, G. (1989). Preferred subtheories: An extended logical framework for default reasoning. In Proceedings of IJCAI (pp. 1043–1048).Google Scholar
  10. 10.
    Cantwell, J. (1999). Relevant contraction. In Proceedings of the Dutch-German workshop on non-monotonic reasoning (DGNMR’99).Google Scholar
  11. 11.
    Cantwell, J. (2003). Eligible contraction. Studia Logica, 73, 167–182.CrossRefGoogle Scholar
  12. 12.
    Hansson, S. O. (1991). Belief contraction without recovery. Studia Logica, 50(2), 251–260.CrossRefGoogle Scholar
  13. 13.
    Hansson, S. O. (1993). Changes on disjunctively closed bases. Journal of Logic, Language and Information, 2, 255–284.CrossRefGoogle Scholar
  14. 14.
    Katsuno, H., & Mendelzon, A. O. (1992). Propositional knowledge base revision and minimal change. Artificial Intelligence, 52(3), 263–294.CrossRefGoogle Scholar
  15. 15.
    Kraus, S., Lehmann, D., & Magidor, M. (1991). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167–207.CrossRefGoogle Scholar
  16. 16.
    Lehmann, D. (1995). Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence, 15(1), 61–82.CrossRefGoogle Scholar
  17. 17.
    Levi, I. (1991). The fixation of b elief and its u ndoing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. 18.
    Maynard-Zhang, P., & Lehmann, D. (2003). Representing and aggregating conflicting beliefs. Journal of Artificial Intelligence Research, 19, 155–203.Google Scholar
  19. 19.
    Meyer, T., Heidema, J., Labuschagne, W., & Leenen, L. (2002). Systematic withdrawal. Journal of Philosophical Logic, 31(5), 415–443.CrossRefGoogle Scholar
  20. 20.
    Pini, M. S., Rossi, F., Brent Venable, K., & Walsh, T. (2009). Aggregating partially ordered preferences. Journal of Logic and Computation, 19, 475–502.CrossRefGoogle Scholar
  21. 21.
    Rott, H. (1992). Preferential belief change using generalized epistemic entrenchment. Journal of Logic, Language and Information, 1, 45–78.CrossRefGoogle Scholar
  22. 22.
    Rott, H. (2001). Change, choice and inference: A study of belief revision and nonmonotonic reasoning. Oxford: Oxford University Press.Google Scholar
  23. 23.
    Rott, H., & Pagnucco, M. (1999). Severe withdrawal (and recovery). Journal of Philosophical Logic, 28, 501–547.CrossRefGoogle Scholar
  24. 24.
    Shoham, Y. (1987). A semantical approach to nonmonotic logics. In Proceedings of LICS (pp. 275–279).Google Scholar
  25. 25.
    Yahi, S., Benferhat, S., Lagrue, S., Sérayet, M., & Papini, O. (2008). A lexicographic inference for partially preordered belief bases. In Proceedings of KR (pp. 507–517).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Richard Booth
    • 1
    Email author
  • Thomas Meyer
    • 2
  • Chattrakul Sombattheera
    • 3
  1. 1.University of LuxembourgLuxembourgLuxembourg
  2. 2.Centre for Artificial Intelligence ResearchUniversity of KwaZulu-Natal and CSIR MerakaPretoriaSouth Africa
  3. 3.Mahasarakham UniversityMaha SarakhamThailand

Personalised recommendations