Abstract
The standard semantic definition of consequence with respect to a selected set X of symbols, in terms of truth preservation under replacement (Bolzano) or reinterpretation (Tarski) of symbols outside X, yields a function mapping X to a consequence relation \(\Rightarrow_X\). We investigate a function going in the other direction, thus extracting the constants of a given consequence relation, and we show that this function (a) retrieves the usual logical constants from the usual logical consequence relations, and (b) is an inverse to—more precisely, forms a Galois connection with—the Bolzano–Tarski function.
Similar content being viewed by others
References
Abrusán, M. (2011). Presuppositional and negative islands: A semantic account. Natural Language Semantics, 19(3), 257–321.
Aczel, P. (1990). Replacement systems and the axiomatization of situation theory. In R. Cooper, K. Mukai, & J. Perry (Eds.), Situation theory and its applications (Vol. 1, pp. 3–33). Stanford: CLSI Publications.
Bar-Hillel, Y. (1950). Bolzano’s definition of analytic propositions. Theoria, 16(2), 91–117.
Bolzano, B. (1837). Theory of science. Edited by J. Berg. D. Reidel: Dordrecht (1973)
Bonevac, D. (1985). Quantity and quantification. Noûs, 19, 229–247.
Bonnay, D. (2008). Logicality and invariance. Bulletin of Symbolic Logic, 14(1), 29–68.
Bonnay, D., & Westerståhl, D. (2010). Logical consequence inside out. In M. Aloni & K. Schulz (Eds.), Amsterdam colloquium 2009. LNAI (Vol. 6042, pp. 193–202). Heidelberg: Springer.
Carnap, R. (1937). The logical syntax of language. London: Kegan, Paul, Trench Trubner & Cie. Rev. ed. translation of Logische Syntax der Sprache, Wien: Springer (1934).
Dunn, M., & Belnap, N. (1968). The substitution interpretation of the quantifiers. Noûs, 4, 177–185.
Feferman, S. (2010). Set-theoretical invariance criteria for logicality. Notre Dame Journal of Formal Logic, 51, 3–20.
Fox, D., & Hackl, M. (2006). The universal density of measurement. Linguistics and Philosophy, 59(5), 537–586.
Gajewski, J. (2002). L-analyticity and natural language. Manuscript.
Gentzen, G. (1932). Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen. Mathematische Annalen, 107, 329–350. English translation. In M. E. Szabo (Ed.), The collected papers of Gerhard Gentzen. Amsterdam: North-Holland (1969).
Gómez-Torrente, M. (1996). Tarski on logical consequence. Notre Dame Journal of Formal Logic, 37(1), 125–151.
Hertz, G. (1923). Über Axiomensysteme für beliebige Satzsysteme. Mathematische Annalen, 87, 246–269.
Lewis, C. I., & Langford, C. H. (1932). Symbolig logic. New York: Dover.
MacFarlane, J. (2009). Logical constants. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2009 ed.). http://plato.stanford.edu/archives/fall2009/entries/logicalconstants/.
Peters, S., & Westerståhl, D. (2006). Quantifiers in language and logic. Oxford: Oxford University Press.
Quine, W. (1976). Algebraic logic and predicate functors. In The ways of paradox (pp. 283–307). Cambridge: Harvard University Press.
Shoesmith, D. J., & Smiley, T. J. (1978). Multiple-conclusion logic. Cambridge: Cambridge University Press.
Tarski, A. (1930a). Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I’. Monatshefte für Mathematik und Physik, 37, 361–404. English translation in [24].
Tarski, A. (1930b). Über einige fundamentale Begriffe der Metamathematik. Comptes rendus des séances de la Societeé des Sciences et des Lettres de Varsovie, 23, 22–29. English translation in Tarski [24].
Tarski, A. (1936). On the concept of logical consequence. In [24] (pp. 409–420).
Tarski, A. (1956). Logic, semantics, metamathematics. Oxford: Clarendon Press. Republished 1983 by Hackett Publishing, Indianapolis.
Tarski, A. (1986). What are logical notions?. History and Philosophy of Logic, 7, 145–154.
van Benthem, J. (2003). Is there still logic in Bolzano’s key?. In E. Morscher (Ed.), Bernard Bolzanos Leistungen in Logik, Mathematik und Physik Bd. 16 (pp. 11–34). Sankt Augustin: Academia.
Westerståhl, D. (2011). From constants to consequence, and back. Synthese (online first). doi:10.1007/s11229-011-9902-z.
Author information
Authors and Affiliations
Corresponding author
Additional information
We thank Johan van Benthem, Stephen Read, and Göran Sundholm for helpful remarks, and in particular Lloyd Humberstone, Dave Ripley, and an anonymous referee for very useful comments on an earlier version of this paper. We also thank the audiences at several seminars and workshops where we presented this material, in various stages, for inspiring discussion.
Rights and permissions
About this article
Cite this article
Bonnay, D., Westerståhl, D. Consequence Mining. J Philos Logic 41, 671–709 (2012). https://doi.org/10.1007/s10992-012-9234-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10992-012-9234-6