Journal of Philosophical Logic

, Volume 41, Issue 2, pp 347–385 | Cite as

Tolerant, Classical, Strict

Open Access


In this paper we investigate a semantics for first-order logic originally proposed by R. van Rooij to account for the idea that vague predicates are tolerant, that is, for the principle that if x is P, then y should be P whenever y is similar enough to x. The semantics, which makes use of indifference relations to model similarity, rests on the interaction of three notions of truth: the classical notion, and two dual notions simultaneously defined in terms of it, which we call tolerant truth and strict truth. We characterize the space of consequence relations definable in terms of those and discuss the kind of solution this gives to the sorites paradox. We discuss some applications of the framework to the pragmatics and psycholinguistics of vague predicates, in particular regarding judgments about borderline cases.


Vagueness Sorites paradox Tolerance Logical consequence Truth Non-transitivity Trivalent logics Paraconsistent logics 


  1. 1.
    Alxatib, S., & Pelletier, J. (2010). The psychology of vagueness: Borderline cases and contradictions. Mind and Language. (forthcoming).Google Scholar
  2. 2.
    Asher, N., & Lascarides, A. (1993). Temporal interpretation, discourse relations, and commonsense entailment. Linguistics and Philosophy, 16, 437–493.CrossRefGoogle Scholar
  3. 3.
    Beall, J., & van Fraassen, B. C. (2003). Possibilities and paradox: An introduction to modal and many-valued logic. Oxford: Oxford University Press.Google Scholar
  4. 4.
    Cobreros, P. (2008). Supervaluationism and logical consequence: A third way. Studia Logica, 90(3), 219–312.CrossRefGoogle Scholar
  5. 5.
    Cobreros, P. (2010). Varzi on supervaluationism and logical consequence. Mind. (forthcoming).Google Scholar
  6. 6.
    Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., & Peters, S. (1998). Reciprocal expressions and the concept of reciprocity. Linguistics and Philosophy, 21, 159–210.CrossRefGoogle Scholar
  7. 7.
    Douven, I., Decock, L., Dietz, R., & Egré, P. (2010). Vagueness: A conceptual spaces approach. (manuscript, under review).Google Scholar
  8. 8.
    Dummett, M. (1975). Wang’s paradox. Synthese, 30, 301–324.CrossRefGoogle Scholar
  9. 9.
    Egré, P., & Bonnay, D. (2010). Vagueness, uncertainty, and degrees of clarity. Synthese, 174, 47–78.CrossRefGoogle Scholar
  10. 10.
    Fine, K. (1975). Vagueness, truth, and logic. Synthese, 30, 265–300.CrossRefGoogle Scholar
  11. 11.
    Goodman, N. (1951). The structure of appearance. Cambridge: Harvard University Press.Google Scholar
  12. 12.
    Grosz, B., Joshi, A., & Weinstein, S. (1995). Centering: A framework for modeling the local coherence of discourse. Computational Linguistics, 21, 203–226.Google Scholar
  13. 13.
    Hyde, D. (1997). From heaps and gaps to heaps of gluts. Mind, 106, 641–660.CrossRefGoogle Scholar
  14. 14.
    Kamp, H. (1976). Two theories about adjectives. In E. L. Keenan (Ed.), Formal semantics for natural language. Cambridge: Cambridge University Press.Google Scholar
  15. 15.
    Kamp, H. (1981). The paradox of the heap. In U. Mönnich (Ed.), Aspects of philosophical logic. D. Reidel.Google Scholar
  16. 16.
    Keefe, R. (2000). Theories of vagueness. Cambridge: Cambridge University Press.Google Scholar
  17. 17.
    Luce, R. D. (1956). Semiorders and a theory of utility discrimination. Econometrica, 24, 178–191.CrossRefGoogle Scholar
  18. 18.
    Mendelson, B. (1975). Introduction to topology (3rd ed.). Dover reedition 1990. New York: Dover.Google Scholar
  19. 19.
    Pawlak, Z. (2005). A treatise on rough sets. In J. F. Peters, & A. Skowron (Eds.), Transactions on rough sets IV (pp. 1–17). Berlin: Springer.CrossRefGoogle Scholar
  20. 20.
    Pinkal, M. (1995). Logic and Lexicon. Dordrecht: Kluwer Academic Publishers.Google Scholar
  21. 21.
    Priest, G. (1979). Logic of paradox. Journal of Philosophical Logic, 8, 219–241.CrossRefGoogle Scholar
  22. 22.
    Priest, G. (2008). An Introduction to non-classical logic: From if to is (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  23. 23.
    Ripley, D. (2009). Contradictions at the borders. In R. Nouwen, R. van Rooij, H.-C. Schmitz, & U. Sauerland (Eds.), Vagueness in communication. Berlin: LICS, Springer. (forthcoming).Google Scholar
  24. 24.
    Ripley, D. (2010). Sorting out the sorites. In F. Berto, E. Mares, & K. Tanaka (Eds.), Paraconsistent Logic (tentative title). (forthcoming).Google Scholar
  25. 25.
    Serchuk, P., Hargreaves, I., & Zach, R. (2010). Vagueness, logic and use: Four experimental studies on vagueness. Mind and Language. (forthcoming).Google Scholar
  26. 26.
    Smith, N. J. J. (2008). Vagueness and degrees of truth. Oxford: Oxford University Press.CrossRefGoogle Scholar
  27. 27.
    Smullyan, R. M. (1995). First-order Logic. New York: Dover.Google Scholar
  28. 28.
    van Rooij, R. (2010a). Implicit vs. explicit comparatives. In P. Egré, & N. Klinedinst (Eds.), Vagueness and language use. Palgrave Macmillan.Google Scholar
  29. 29.
    van Rooij, R. (2010b). Vagueness, tolerance, and non-transitive entailment. (manuscript).Google Scholar
  30. 30.
    Varzi, A. (2007). Supervaluationism and its logics. Mind, 116, 633–676.CrossRefGoogle Scholar
  31. 31.
    Weber, Z. (2010). A paraconsistent model of vagueness. Mind. (forthcoming).Google Scholar
  32. 32.
    Williamson, T. (1994). Vagueness. London: Routledge.Google Scholar
  33. 33.
    Winter, Y. (2001). Plural predication and the strongest meaning hypothesis. Journal of Semantics, 18, 333–365.CrossRefGoogle Scholar
  34. 34.
    Zardini, E. (2008). A model of tolerance. Studia Logica, 90, 337–368.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of NavarraPamplonaSpain
  2. 2.Institut Jean-Nicod (CNRS-EHESS-ENS), Département d’Etudes Cognitives de l’ENSParisFrance
  3. 3.Department of Philosophy—Old QuadUniversity of MelbourneParkvilleAustralia
  4. 4.Institute for Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations