## Abstract

Inductive probability is the logical concept of probability in ordinary language. It is vague but it can be explicated by defining a clear and precise concept that can serve some of the same purposes. This paper presents a general method for doing such an explication and then a particular explication due to Carnap. Common criticisms of Carnap’s inductive logic are examined; it is shown that most of them are spurious and the others are not fundamental.

This is a preview of subscription content, access via your institution.

## References

- 1.
Carnap, R. (1936). Testability and meaning, parts I–III.

*Philosophy of Science, 3*, 419–471. Reprinted by the Graduate Philosophy Club, Yale University, 1950. - 2.
Carnap, R. (1937).

*The logical syntax of language*. Routledge and Kegan Paul. Translated by Amethe Smeaton. - 3.
Carnap, R. (1945). On inductive logic.

*Philosophy of Science, 12*, 72–97. - 4.
Carnap, R. (1950).

*Logical foundations of probability*(2nd ed., 1962). University of Chicago Press. - 5.
Carnap, R. (1952).

*The continuum of inductive methods*. University of Chicago Press. - 6.
Carnap, R. (1956).

*Meaning and necessity*(2nd ed.). University of Chicago Press. - 7.
Carnap, R. (1963). Intellectual autobiography. In P. A. Schilpp (Ed.),

*The philosophy of Rudolf Carnap*(pp. 1–84). Open Court. - 8.
Carnap, R. (1971). A basic system of inductive logic, part I. In R. Carnap, & R. Jeffrey (Eds.),

*Studies in inductive logic and probability*(Vol. 1, pp. 33–165). Berkeley: University of California Press. - 9.
Carnap, R. (1980). A basic system of inductive logic, part II. In R. C. Jeffrey (Ed.),

*Studies in inductive logic and probability*(Vol. 2, pp. 7–155). University of California Press. - 10.
Congdon, P. (2007).

*Bayesian statistical modelling*(2nd ed.). Wiley. - 11.
de Finetti, B. (1937). La prevision: Ses lois logiques, ses sources subjectives.

*Annales de l’Institut Henri P**oincaré, 7*, 1–68. English translation in [23]. - 12.
de Finetti, B. (2008).

*Philosophical lectures on probability*. Springer. - 13.
Fine, T. L. (1973).

*Theories of probability*. Academic. - 14.
Freudenthal, H. (1974). The crux of course design in probability.

*Educational Studies in Mathematics, 5*, 261–277. Errata in vol. 6, p. 125 (1975). - 15.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003).

*Bayesian data analysis*(2nd ed.). Chapman & Hall. - 16.
Goodman, N. (1979).

*Fact, fiction, and forecast*(3rd ed.). Hackett. - 17.
Hájek, A. (2003). What conditional probability could not be.

*Synthese, 137*, 273–323. - 18.
Hájek, A. (2007). Interpretations of probability. In E. N. Zalta (Ed.),

*The Stanford encyclopedia of philosophy*. http://plato.stanford.edu/archives/fall2007/entries/probability-interpret/. - 19.
Jeffrey, R.. (1971). Probability measures and integrals. In R. Carnap, & R. Jeffrey (Eds.),

*Studies in inductive logic and probability*(Vol. 1, pp. 167–223). Berkeley: University of California Press. - 20.
Jeffrey, R.. (1992).

*Probability and the art of judgment*. Cambridge University Press. - 21.
Keynes, J. M.. (1921).

*A treatise on probability*. Macmillan. Reprinted with corrections 1948. - 22.
Kolmogorov, A. N. (1933).

*Grundbegriffe der wahrscheinlichkeitsrechnung*. English translation:*Foundations of probability*. Trans. Nathan Morrison. Chelsea (1956). - 23.
Kyburg, Jr., H. E., & Smokler, H. E. (Eds.) (1980).

*Studies in subjective probability*(2nd ed.). Krieger. - 24.
Maher, P. (1996). Subjective and objective confirmation.

*Philosophy of Science, 63*, 149–173. - 25.
Maher, P. (2001). Probabilities for multiple properties: The models of Hesse and Carnap and Kemeny.

*Erkenntnis, 55*, 183–216. - 26.
Maher, P. (2004). Probability captures the logic of scientific confirmation. In C. R. Hitchcock (Ed.),

*Contemporary debates in philosophy of science*(pp. 69–93). Blackwell. - 27.
Maher, P. (2006). The concept of inductive probability.

*Erkenntnis, 65*, 185–206. - 28.
Maher, P. (2009). Physical probability. In C. Glymour, W. Wang, & D. Westerståhl (Eds.),

*Logic, methodology and philosophy of science: Proceedings of the thirteenth international congress*(pp. 193–210). College Publications. - 29.
Pearl, J.. (1990). Jeffrey’s rule, passage of experience, and

*Neo*-Bayesianism. In H. E. Kyburg, Jr., R. P. Loui, & G. N. Carlson (Eds.),*Knowledge representation and defeasible reasoning*(pp. 245–265). Kluwer. - 30.
Roeper, P., & Leblanc, H. (1999).

*Probability theory and probability logic*. University of Toronto Press. - 31.
von Wright, G. H. (1957).

*The logical problem of induction*(2nd ed.). Blackwell. - 32.
Zabell, S. L. (1997). Confirming universal generalizations.

*Erkenntnis, 45*, 267–283.

## Author information

### Affiliations

### Corresponding author

## Rights and permissions

## About this article

### Cite this article

Maher, P. Explication of Inductive Probability.
*J Philos Logic* **39, **593–616 (2010). https://doi.org/10.1007/s10992-010-9144-4

Received:

Accepted:

Published:

Issue Date:

### Keywords

- Inductive probability
- Explication
- Carnap