Skip to main content
Log in

A Loop-Free Decision Procedure for Modal Propositional Logics K4, S4 and S5

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

The aim of this paper is to present a loop-free decision procedure for modal propositional logics K4, S4 and S5. We prove that the procedure terminates and that it is sound and complete. The procedure is based on the method of Socratic proofs for modal logics, which is grounded in the logic of questions IEL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fitting, M. (1983). Proof methods for modal and intuitionistic logic, vol. 169 of Synthese Library. Dordrecht: Reidel.

    Google Scholar 

  2. Goré, R. (1999). Tableau methods for modal and temporal logics. In M. D’Agostino, D. M. Gabbay, R. Hähnle & J. Posegga (Eds.), Handbook of tableau methods (pp. 297–396). Dordrecht: Kluwer.

    Google Scholar 

  3. Heuerding, A., Seyfried, M., & Zimmermann, H. (1996). Efficient loop-check for backward proof search in some non-classical propositional logics. Proceedings of the 5th Workshop on Theorem Proving with Analytic Tableaux and Related Methods, LNCS 1071, pp. 210–225.

  4. Horrocks, I., & Sattler, U. (1999). A description logic with transitive and inverse roles and role hierarchies. Journal of Logic and Computation 9(No. 3), 385–410.

    Article  Google Scholar 

  5. Horrocks, I., Sattler, U., & Tobies, S. (2000). Practical reasoning for very expressive description logics. Logic Journal of the IGPL 8(No. 3), 239–263.

    Article  Google Scholar 

  6. Hughes, G., & Cresswell, M. (1968). An introduction to modal logic. London: Methuen.

    Google Scholar 

  7. Indrzejczak, A. (2006). Hybrydowe systemy dedukcyjne w logikach modalnych, (Hybrid deductive systems for modal logics). Łódź: University of Łódź Press.

    Google Scholar 

  8. Leszczyńska, D. (2004). Socratic proofs for some normal modal propositional logics. Logique et Analyse 47(No. 185–188), 259–285.

    Google Scholar 

  9. Leszczyńska, D. The method of Socratic proofs for normal modal propositional logics, PhD Thesis, University of Zielona Góra, Zielona Góra 2006; printed by Adam Mickiewicz University Press, Poznań 2007.

  10. Leszczyńska-Jasion, D. (2008). The method of Socratic proofs for modal propositional logics: K5, S4.2, S4.3, S4M, S4F, S4R and G. Studia Logica 89(No. 3), 371–405.

    Google Scholar 

  11. Matsumoto, T. (2003). A tableau system for modal logic S4 with an efficient proof-search procedure. Conference paper, Proceeding of the 5th Japan Society for Software Science and Technology Workshop on Programming and Programming Languages, pp. 75–86.

  12. Negri, S., & von Plato, J. (2001). Structural proof theory. Cambridge: Cambridge University Press.

    Google Scholar 

  13. Rautenberg, W. (1983). Modal tableau calculi and interpolation. Journal of Philosophical Logic 12(No. 4), 403–423.

    Article  Google Scholar 

  14. Smullyan, R. M. (1968). First-order logic. Berlin: Springer.

    Google Scholar 

  15. Wiśniewski, A. (1995). The posing of questions: Logical foundations of erotetic inferences. Dordrecht: Kluwer.

    Google Scholar 

  16. Wiśniewski, A. (2004). Socratic proofs. Journal of Philosophical Logic 33(No. 3), 299–326.

    Article  Google Scholar 

  17. Wiśniewski, A., & Shangin, V. (2006). Socratic proofs for quantifiers. Journal of Philosophical Logic 35(No. 2), 147–178.

    Article  Google Scholar 

  18. Wiśniewski, A., Vanackere, G., & Leszczyńska, D. (2005). Socratic proofs and paraconsistency: A case study. Studia Logica 80(No. 2–3), 433–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Leszczyńska-Jasion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leszczyńska-Jasion, D. A Loop-Free Decision Procedure for Modal Propositional Logics K4, S4 and S5. J Philos Logic 38, 151–177 (2009). https://doi.org/10.1007/s10992-008-9089-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-008-9089-z

Key words

Navigation