Skip to main content
Log in

Cite this article


Standard Kripke models are inadequate to model situations of inexact knowledge with introspection, since positive and negative introspection force the relation of epistemic indiscernibility to be transitive and euclidean. Correlatively, Williamson’s margin for error semantics for inexact knowledge invalidates axioms 4 and 5. We present a new semantics for modal logic which is shown to be complete for K45, without constraining the accessibility relation to be transitive or euclidean. The semantics corresponds to a system of modular knowledge, in which iterated modalities and simple modalities are not on a par. We show how the semantics helps to solve Williamson’s luminosity paradox, and argue that it corresponds to an integrated model of perceptual and introspective knowledge that is psychologically more plausible than the one defended by Williamson. We formulate a generalized version of the semantics, called token semantics, in which modalities are iteration-sensitive up to degree n and insensitive beyond n. The multi-agent version of the semantics yields a resource-sensitive logic with implications for the representation of common knowledge in situations of bounded rationality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Blackburn, P., de Rijke M., & Venema, Y. (1999). Modal Logic. Cambridge tracts in theoretical computer science 53, Cambridge University Press.

  2. Bonnay, D., & Égré, P.: A non-standard semantics for inexact knowledge with introspection. In R. Parikh & S. Artemov (Eds.), Proceedings of the ESSLLI 2006 workshop rationality and knowledge.

  3. Bonnay, D., & Égré, P. (2007). Vagueness and introspection. Prague Colloquium on Reasoning about Vagueness and Probability, manuscript, IJN.

  4. Bonnay, D., & Égré, P. (2008) Margins for error in context. In M. Garcia-Carpintero & M. Këlbel (Eds.), Relative Truth (pp. 103–107). Oxford: Oxford UP.

    Google Scholar 

  5. van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2003). Lecture Notes on Dynamic Epistemic Logic, ESSLLI 2003, Vienna also available as Dynamic Epistemic Logic, Synthese Library, (Vol. 337). Springer, 2007.

  6. Dokic, J., & Égré, P. (2008). Margin for error and the transparency of knowledge. Synthese doi:10.1007/s11229-007-9245-y.

  7. Égré, P. (2008). Reliability, margin for error and self-knowledge. In D. Pritchard & V. Hendricks (Eds.), New waves in epistemology (pp. 215–250). Palgrave Macmillan.

  8. Fagin, R., Halpern, J., Moses, Y., & Vardi, M. (1995). Reasoning about knowledge. Cambridge, MA: MIT Press.

    Google Scholar 

  9. Gabbay, D. (2002). A theory of hypermodal logics: Mode shifting in modal logic. Journal of Philosophical Logic, 31, 211–243.

    Article  Google Scholar 

  10. Halpern, J. (2004). Intransitivity and vagueness. In Proceedings of the ninth international conference on principles of knowledge representation and reasoning (KR 2004) (pp. 121–129).

  11. Kamp, H. (1971). Formal properties of “Now”. Theoria, 37, 227–273.

    Article  Google Scholar 

  12. Mongin, P. (2002). “Modèles d’Information et Théorie de la Connaissance”. Course Notes, Ecole Polytechnique, Feb. 2002, Laboratoire d’Econométrie.

  13. Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge, MA: MIT Press.

    Google Scholar 

  14. Rubinstein, A. (1989). The electronic mail game: Strategic behavior under ‘almost common knowledge’. American Economic Review, 79, 385–391.

    Google Scholar 

  15. Williamson, T. (1992). Inexact knowledge. Mind, 101, 217–242.

    Article  Google Scholar 

  16. Williamson, T. (1992). An alternative rule of disjunction in modal logic. Notre Dame Journal of Formal Logic, 33(1), 89–100.

    Article  Google Scholar 

  17. Williamson, T. (1994). Vagueness. London: Routledge.

    Google Scholar 

  18. Williamson, T. (2000). Knowledge and its limits. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Denis Bonnay or Paul Égré.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonnay, D., Égré, P. Inexact Knowledge with Introspection. J Philos Logic 38, 179–227 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: