Skip to main content
Log in

Steps Toward a Computational Metaphysics

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

In this paper, the authors describe their initial investigations in computational metaphysics. Our method is to implement axiomatic metaphysics in an automated reasoning system. In this paper, we describe what we have discovered when the theory of abstract objects is implemented in prover9 (a first-order automated reasoning system which is the successor to otter). After reviewing the second-order, axiomatic theory of abstract objects, we show (1) how to represent a fragment of that theory in prover9’s first-order syntax, and (2) how prover9 then finds proofs of interesting theorems of metaphysics, such as that every possible world is maximal. We conclude the paper by discussing some issues for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyer, R. and Moore, J.: 1979, A Computational Logic, Academic, New York (Harcourt Brace Jovanovich, ACM Monograph Series).

    Google Scholar 

  • Huet, G.: 1973, The undecidability of unification in third order logic, Information and Control 22(3), 257–267.

    Article  Google Scholar 

  • Kalman, J.: 2001, Automated Reasoning with Otter, Rinton, Princeton, NJ.

    Google Scholar 

  • Kohlhase, M.: 1998, Higher-order automated theorem proving, in Automated Deduction – A Basis for Applications, vol. I, vol. 8 of Applied Logic Series, Kluwer, Dordrecht, pp. 431–462.

  • Kowalski, R.: 1970, The case for using equality axioms in automatic demonstration, in Symposium on Automatic Demonstration (Versailles, 1968), Lecture Notes in Mathematics, vol. 125, Springer, Berlin Heidelberg New York, pp. 112–127.

  • Leibniz, G.: 1890, in C. Gerhardt (ed.), Die Philosophischen Schriften von Gottfried Wilhelm Leibniz, vol. vii, Olms, Berlin.

    Google Scholar 

  • Linsky, B. and Zalta, E.: 1994, In defense of the simplest quantified modal logic, Philosophical Perspectives 8, 189–211.

    Article  Google Scholar 

  • Mally, E.: 1912, Gegenstandstheoretische Grundlagen der Logik und Logistik, Barth, Leipzig.

    Google Scholar 

  • Mancosu, P.: 1996, Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, Oxford University Press, New York.

    Google Scholar 

  • Manzano, M.: 1996, Extensions of first order logic, in Cambridge Tracts in Theoretical Computer Science, vol. 19, Cambridge University Press, Cambridge.

  • McCune, W.: 2003a, ‘Mace4 Reference Manual and Guide.’ Technical Memorandum 264, Argonne National Laboratory, Argonne, IL. URL=http://www-unix.mcs.anl.gov/AR/mace4/July-2005/doc/mace4.pdf.

  • McCune, W.: 2003b, ‘Otter 3.3 Reference Manual.’ Technical Memorandum 263, Argonne National Laboratory, Argonne, IL. URL=http://www.mcs.anl.gov/AR/otter/otter33.pdf.

  • McCune, W.: 2006, ‘Prover9 Manual.’ Technical Report, Argonne National Laboratory. URL=http://www.cs.unm.edu/~mccune/prover9/manual/.

  • Pelletier, F. and Zalta, E.: 2000, How to say goodbye to the third man, Nous 34(2), 165–202.

    Article  Google Scholar 

  • Pietrzykowski, T.: 1973, A complete mechanization of second-order logic, Journal of the Assocation for Computing Machinery 20(2), 333–365.

    Google Scholar 

  • Portoraro, F.: 2005, Automated reasoning, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter).

  • Robinson, J. A.: 1963, Theorem-proving on the computer, Journal of the Association of Computing Machinery 10, 163–174.

    Google Scholar 

  • Robinson, J. A.: 1965, Automatic deduction with hyper-resolution, International Journal of Computer Mathematics 1, 227–234.

    Google Scholar 

  • Robinson, G. and Wos, L.: 1969, Paramodulation and theorem-proving in first-order theories with equality, in Machine Intelligence, 4, American Elsevier, New York, pp. 135–150.

  • Russell, B.: 1900, A Critical Exposition of the Philosophy of Leibniz, Cambridge University Press, Cambridge.

    Google Scholar 

  • Spinoza, B.: 1677, Ethics, in G.H.R Parkinson (ed.), Oxford University Press, Oxford (2000, translated by G.H.R Parkinson).

  • Wos, L., Robinson, G., Carson, D., and Shalla, L.: 1967, The concept of demodulation in theorem proving, Journal of the Association for Computing Machinery 14(4), 698–709.

    Google Scholar 

  • Wos, L., Overbeek, R., Lusk, E., and Boyle, J.: 1992, Automated Reasoning: Introduction and Applications, 2nd edition, McGraw-Hill, New York.

    Google Scholar 

  • Zalta, E.: 1983, Abstract Objects: An Introduction to Axiomatic Metaphysics, Reidel, Dordrecht.

    Google Scholar 

  • Zalta, E.: 1993, Twenty-five basic theorems in situation and world theory, Journal of Philosophical Logic 22(4), 385–428.

    Article  Google Scholar 

  • Zalta, E.: 1999, Natural numbers and natural cardinals as abstract objects: a partial reconstruction of Frege’s Grundgesetze in object theory, Journal of Philosophical Logic 28(6), 619–660.

    Article  Google Scholar 

  • Zalta, E.: 2000, A (Leibnizian) theory of concepts, Philosophiegeschichte und logische Analyse/Logical Analysis and History of Philosophy 3, 137–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward N. Zalta.

Additional information

Copyright © 2006, by Branden Fitelson and Edward N. Zalta. The authors would like to thank Chris Menzel and Paul Oppenheimer for extremely helpful discussions about our representation of object theory in prover9 syntax. We’re also grateful to Paul Oppenheimer and Paolo Mancosu for carefully reading the final draft and pointing out errors. A web page has been built in support of the present paper; see <http://mally.stanford.edu/cm/> and its mirror at <http://fitelson.org/cm/>.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitelson, B., Zalta, E.N. Steps Toward a Computational Metaphysics. J Philos Logic 36, 227–247 (2007). https://doi.org/10.1007/s10992-006-9038-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-006-9038-7

Key words

Navigation