Skip to main content
Log in

In Situ Assembly of Melittin-PHA Microspheres for Enhancing Therapeutic Efficacy in Cancer Treatment

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Amphiphilic cationic peptide (ACP) is a widely studied biofilm-active peptide that has great potential in cancer treatment. However, poor stability, a short half-life, and complex preparation pose significant challenges for practical therapeutic applications. In the current investigation, the amphiphilic peptide Melittin (Mel), recognized for its powerful anticancer properties, was chosen from natural and synthetic ACP, and integrated into a nanostructure by utilizing polyhydroxyalkanoate (PHA) microspheres as carriers to produce Mel-loaded PHA microspheres (Mel@PHA-PhaC). Mel@PHA-PhaC nanostructure was self-assembled in Escherichia coli, simplifying its preparation and making it more convenient and high-yield. Mel@PHA-PhaC were spherical, with a particle size of approximately 300 nm, as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The concentration of Mel in Mel@PHA-PhaC was 4 μg/mg. Mel@PHA-PhaC still maintained good stability after being treated with pancreatic enzymes. Furthermore, in vitro experiments demonstrated that Mel@PHA-PhaC enhanced the inhibitory effect on cancer cells compared to free Mel. This study provides insights and guidelines for the development and utilization of peptide delivery systems using PHA microspheres to create stable and improved peptides for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Bennett R, Yakkundi A, McKeen HD, McClements L, McKeogh TJ, McCrudden CM, Arthur K, Robson T, McCarthy HO (2015) RALA-mediated delivery of FKBPL nucleic acid therapeutics. Nanomedicine 10(19):2989–3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswaro LS, da Costa Sousa MG, Rezende TMB, Dias SC, Franco OL (2018) Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol 9:855

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai SF, Cai L, Liu HL, Liu XQ, Han J, Zhou J, Xiang H (2012) Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in haloferax mediterranei. Appl Environ Microb 78(6):1946–1952

    Article  CAS  Google Scholar 

  • Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38(8):2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Chen YQ, Zhang SQ, Li BC, Qiu W, Jiao B, Zhang J, Diao ZY (2008) Expression of a cytotoxic cationic antibacterial peptide in Escherichia coli using two fusion partners. Protein Expres Purif 57(2):303–311

    Article  CAS  Google Scholar 

  • Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ, Zhang SQ (2010) A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 31(8):1504–1510

    Article  CAS  PubMed  Google Scholar 

  • Daniluk K, Lange A, Wójcik B, Zawadzka K, Bałaban J, Kutwin M, Jaworski S (2023) Effect of Melittin complexes with graphene and graphene oxide on triple-negative breast cancer tumors grown on chicken embryo chorioallantoic membrane. Int J Mol Sci 24:8388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Melo RN, de Souza Hassemer G, Steffens J, Junges A, Valduga E (2023) Recent updates to microbial production and recovery of polyhydroxyalkanoates. 3 Biotech 13(6):204

    Article  PubMed  Google Scholar 

  • Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group a streptococcus. J Invest Dermatol 117(1):91–97

    Article  CAS  PubMed  Google Scholar 

  • Draper JL, Rehm BH (2012) Engineering bacteria to manufacture functionalized polyester beads. Bioengineered 3(4):203–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MARB (2013) From antimicrobial to anticancer peptides. Front Microbiol 4:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock REW, Sah H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Isogai E, Isogai H, Takahashi K, Okumura K, Savage PB (2009) Ceragenin CSA-13 exhibits antimicrobial activity against cariogenic and periodontopathic bacteria. Oral Microbiol Immunol 24:170–172

    Article  CAS  PubMed  Google Scholar 

  • Jiang JW, Pan YZ, Li ZY, Xia LJ (2022) Cecropin-loaded zeolitic imidazolate framework nanoparticles with high biocompatibility and cervical cancer cell toxicity. Molecules 27(14):4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite ML, da Cunha NB, Costa FF (2018) Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Therapeut 183:160–176

    Article  CAS  Google Scholar 

  • Li Z, Loh XJ (2016) Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wires Nanomed Nanobi 9:1249

    Google Scholar 

  • Li C, Liu H, Yang Y, Xu X, Lv T, Zhang H, Liu K, Zhang S, Chen Y (2018a) N-myristoylation of antimicrobial peptide CM4 enhances its anticancer activity by interacting with cell membrane and targeting mitochondria in breast cancer cells. Front Pharmacol 9:1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SJ, Yang YK, Liu M, Bai ZH, Jin J (2018b) Efficient expression of SUMO protease Ulp1 and used to express and purified scFv by His-SUMO tag. China Biotech 38(3):51–61

    CAS  Google Scholar 

  • Liu CC, Hao DJ, Zhang Q, An J, Zhao JJ, Chen B, Zhang LL, Yang H (2016) Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemoth Pharm 78:1113–1130

    Article  CAS  Google Scholar 

  • Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A (2013) PHA recovery from biomass. Biomacromolecules 14(9):2963–2972

    Article  CAS  PubMed  Google Scholar 

  • McCarthy HO, McCaffrey J, McCrudden CM, Zholobenko A, Ali AA, McBride JW, Massey AS, Pentlavalli S, Chen K-H, Cole G, Loughran SP, Dunne NJ, Donnelly R, Kett VL, Robson T (2014) Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release 189:141–149

    Article  CAS  PubMed  Google Scholar 

  • Niemirowicz K, Prokop I, Wilczewska AZ, Wnorowska U, Piktel E, Wątek M, Savage PB, Bucki R (2015) Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int J Nanomed 10:3843–3853

    Article  CAS  Google Scholar 

  • Pandaab JJ, Chauhan VS (2014) Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering. Polym Chem 5:4418–4436

    Google Scholar 

  • Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Bioscience Rep 27(4–5):189–223

    Article  CAS  Google Scholar 

  • Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides-challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164(8):766–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez AA, Otero-González a, Ghattas M, Ständker L (2021) Discovery, optimization, and clinical application of natural antimicrobial peptides. Biomedicines 9(10):1381

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Sehgal R, Gupta R (2012) Polyhydroxyalkanoate (PHA): properties and modifications. Polymers 212:123161

    Article  Google Scholar 

  • Soman NR, Lanza GM, Heuser JM, Schlesinger PH, Wickline SA (2008) Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett 8(4):1131–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thankappan B, Sivakumar J, Asokan S, Ramasamy M, Pillai MM, Selvakumar R, Angayarkanni J (2021) Dual antimicrobial and anticancer activity of a novel synthetic α-helical antimicrobial peptide. Eur J Pharm Sci 161:105784

    Article  CAS  PubMed  Google Scholar 

  • Tian JM, Sinskey AJ, Stubbe JA (2005) Kinetic studies of polyhydroxybutyrate granule formation in wautersia eutropha H16 by transmission electron microscopy. J Bacteriol 187(11):3814–3824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML (2020) Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules 25(12):2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JJ, Li FY, Tan J, Peng XW, Sun LL, Wang P, Jia SN, Yu QM, Huo HL, Zhao HY (2017) Melittin inhibits the invasion of MCF-7 cells by downregulating CD147 and MMP-9 expression. Oncol Lett 13:599–604

    Article  CAS  PubMed  Google Scholar 

  • Yazdian Robati R, Arab A, Ramezani M, Rafatpanah H, Bahreyni A, Nabavinia MS, Abnous K, Taghdisi SM (2019) Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo. Drug Dev Ind Pharm 45(4):603–610

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Jia S, Yu S, Chen Y, Chen ZC, Dai H (2023) Recent advances in melittin-based nanoparticles for antitumor treatment: from mechanisms to targeted delivery strategies. J Nanobiotechnol 21:454

    Article  CAS  Google Scholar 

  • Zetterberg MM, Reijmar K, Pränting M, Pränting Å, Andersson DI, Edwards K (2011) PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides. J Control Release 156(3):323–328

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao B, Huang C, Meng XM, Bian EB, Jun L (2014) Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells. PLos One 9(5):e95520

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of China (grant number 3210120332), the Natural Science Foundation of Hebei Province (B2023201108), the Research and Innovation Team Project of Hebei University (IT2023B01) and the Post-graduate’s Innovation Fund Project of Hebei University (grant number HBU2023SS013).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: X.F., W.L., H.Z. and S.F.; methodology: X.F., C.Z., S.F., S.W., J.D. and S.M.; validation: X.F., C.Z., S.F., S.W., and S.M.; formal analysis: X.F., C.Z.; resources: J.D., W.L. and H.Z.; data curation: X.F. and S.F.; writing—original draft preparation: X.F.; writing—review and editing: X.F., J.D., W.L. and H.Z.; supervision: J.D., W.L. and H.Z.; funding acquisition: W.L. and H.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jie Du, Wei Li or Honglei Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Zhang, C., Fu, S. et al. In Situ Assembly of Melittin-PHA Microspheres for Enhancing Therapeutic Efficacy in Cancer Treatment. Int J Pept Res Ther 30, 30 (2024). https://doi.org/10.1007/s10989-024-10600-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-024-10600-2

Keywords

Navigation