Skip to main content

Advertisement

Log in

A Review of Recent Advances in Peptide-Based Anticancer Therapeutic Vaccines and Nanovaccines in Prostate Cancer

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Immunotherapy is a critical component of treating various malignancies. So far, there have been numerous attempts to cure prostate cancer operating diverse types of immunotherapy. The raised numeral of myeloid-derived suppressor cells or regulatory T cells, the lack of cytotoxic T cells, reduced numbers of cancer antigens, a flaw in antigen presentation, and an immunosuppressive “cold tumor” microenvironment are the metiers that prostate cancer was known by them. However, there is hope that immunotherapeutic approaches will be improved in the future due to our expanding knowledge of the mechanisms underpinning interactions between tumors and the immune system. This review aims to provide an overview of the immune response, tumor microenvironment, and present level and future trends of expanding prostate cancer immunotherapy. Additionally, it assesses current studies on developing peptide-based therapeutic cancer vaccines and Nano drugs for prostate cancer and looks for patterns that might usher the clinical implementation of these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdali MH, Afshar S, Pashaki AS et al (2020) Investigating the effect of radiosensitizer for ursolic acid and kamolonol acetate on HCT-116 cell line. Bioorg Med Chem 28(1):115152

    Google Scholar 

  • Afshar S, Pashaki AS, Najafi R et al (2020) Cross-resistance of acquired radioresistant colorectal cancer cell line to gefitinib and regorafenib. Iran J Med Sci 45(1):50

    PubMed  Google Scholar 

  • Ahmadi M (2020) Iron oxide nanoparticles for delivery purposes. Nanoengineered biomaterials for advanced drug delivery. Elsevier, New York, pp 373–393

    Google Scholar 

  • Ahmadi M, Madrakian T, Afkhami A (2020) Smart nanogels in cancer therapy. Smart Nanocontainers. Elsevier, New York, pp 179–193

    Google Scholar 

  • Ahmadi M, Madrakian T, Ghoorchian A, Kamalabadi M, Afkhami A (2020) Stimuli-sensitive drug delivery systems. Nanoengineered biomaterials for advanced drug delivery. Elsevier, New York, pp 37–59

    Google Scholar 

  • Azmi F, Ahmad Fuaad AAH, Skwarczynski M, Toth I (2014) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10(3):778–796

    CAS  PubMed  Google Scholar 

  • Bailey S, Lassoued W, Papanicolau-Sengos A, et al. (2021) 420 PROSTVAC in combination with nivolumab enhanced immune cell infiltration in prostate cancer. BMJ Spec J. https://doi.org/10.1136/jitc-2021-SITC2021.420

  • Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(23):5591–5596

    CAS  PubMed  Google Scholar 

  • Barr AM, Silva A, Prato S et al (2020) Therapeutic ISCOMATRIX™ adjuvant vaccine elicits effective anti-tumor immunity in the TRAMP-C1 mouse model of prostate cancer. Cancer Immunol Immunother 69(10):1959–1972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bicak B, Budama-Kilinc Y, Kecel-Gunduz S, Zorlud T, Akman G (2021) Peptide based nano-drug candidate for cancer treatment: Preparation, characterization, in vitro and in silico evaluation. J Mol Struct 1240:130573

    CAS  Google Scholar 

  • Bijker MS, van den Eeden SJ, Franken KL et al (2008) Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol 38(4):1033–1042

    CAS  PubMed  Google Scholar 

  • Brudno JN, Kochenderfer JN (2016) Toxicities of chimeric antigen receptor T cells: recognition and management. Blood J Am Soc Hematol 127(26):3321–3330

    CAS  Google Scholar 

  • Brunsvig PF, Aamdal S, Gjertsen MK et al (2006) Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother 55(12):1553–1564

    CAS  PubMed  Google Scholar 

  • Cappuccini F, Stribbling S, Pollock E, Hill AV, Redchenko I (2016) Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer Immunol Immunother 65(6):701–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Wu F, Li J et al (2016) DUP1 peptide modified micelle efficiently targeted delivery paclitaxel and enhance mitochondrial apoptosis on PSMA-negative prostate cancer cells. Springerplus 5:362

    PubMed  PubMed Central  Google Scholar 

  • Chen Q, Bao Y, Burner D et al (2019) Tumor growth inhibition by mSTEAP peptide nanovaccine inducing augmented CD8+ T cell immune responses. Drug Deliv Transl Res 9:1095–1105

    PubMed  Google Scholar 

  • Clem AS (2011) Fundamentals of vaccine immunology. J Glob Infect Dis 3(1):73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coventry BJ (2019) Therapeutic vaccination immunomodulation: forming the basis of all cancer immunotherapy. Ther Adv Vaccin Immunother 7:2515135519862234

    CAS  Google Scholar 

  • Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17(1):134–143

    CAS  PubMed  Google Scholar 

  • Diao L, Meibohm B (2013) Pharmacokinetics and pharmacokinetic–pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 52(10):855–868

    CAS  PubMed  Google Scholar 

  • Drake CG (2011) Update on prostate cancer vaccines. Cancer J 17(5):294–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faintuch BL, Núñez GE, Teodoro R, Moro AM, Mengatti J (2011) Radiolabeled nano-peptides show specificity for an animal model of human PC3 prostate cancer cells. Clinics 66(2):327–336

    PubMed  PubMed Central  Google Scholar 

  • Fauskanger M, Haabeth OAW, Skjeldal FM, Bogen B, Tveita AA (2018) Tumor killing by CD4+ T cells is mediated via induction of inducible nitric oxide synthase-dependent macrophage cytotoxicity. Front Immunol 9:1684

    PubMed  PubMed Central  Google Scholar 

  • Finn OJ (2018) The dawn of vaccines for cancer prevention. Nat Rev Immunol 18(3):183–194

    CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Bronte V, Chen S-H et al (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67(1):425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Xie H, Zhang Z et al (2021) Fusion protein vaccine based on Ag85B and STEAP1 induces a protective immune response against prostate cancer. Vaccines 9(7):786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell. 144(5):646–74

    CAS  PubMed  Google Scholar 

  • Handa S, Hans B, Goel S et al (2020) Immunotherapy in prostate cancer: current state and future perspectives. Ther Adv Urol 12:1756287220951404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hay AE, Cheung MC (2019) CAR T-cells: costs, comparisons, and commentary. Taylor & Francis, New York, pp 613–5

    Google Scholar 

  • He J, Chu Z, Lai W et al (2021) Circular RNA circHERC4 as a novel oncogenic driver to promote tumor metastasis via the miR-556–5p/CTBP2/E-cadherin axis in colorectal cancer. J Hematol Oncol. 14:1–20

    CAS  Google Scholar 

  • Hilf N, Kuttruff-Coqui S, Frenzel K et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245

    CAS  PubMed  Google Scholar 

  • Hobernik D, Bros M (2018) DNA vaccines—how far from clinical use? Int J Mol Sci 19(11):3605

    PubMed  PubMed Central  Google Scholar 

  • Hu Z, Ott PA, Wu CJ (2018) Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18(3):168–182

    CAS  PubMed  Google Scholar 

  • Hueman MT, Dehqanzada ZA, Novak TE et al (2005) Phase I clinical trial of a HER-2/neu peptide (E75) vaccine for the prevention of prostate-specific antigen recurrence in high-risk prostate cancer patients. Clin Cancer Res 11(20):7470–7479

    CAS  PubMed  Google Scholar 

  • Inderberg-Suso E-M, Trachsel S, Lislerud K, Rasmussen A-M, Gaudernack G (2012) Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunology 1(5):670–686

    PubMed  PubMed Central  Google Scholar 

  • Jäger D, Jäger E, Knuth A (2001) Immune responses to tumour antigens: implications for antigen specific immunotherapy of cancer. J Clin Pathol 54(9):669–674

    PubMed  PubMed Central  Google Scholar 

  • Janiczek M, Szylberg Ł, Kasperska A, et al. (2017) Immunotherapy as a promising treatment for prostate cancer: a systematic review. J Immunol Res 2017:4861570

  • Junco JA, Peschke P, Zuna I et al (2007) Immunotherapy of prostate cancer in a murine model using a novel GnRH based vaccine candidate. Vaccine 25(50):8460–8468

    CAS  PubMed  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    CAS  PubMed  Google Scholar 

  • Li C, Ni YQ, Xu H, et al. (2016) Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Sig Transduct Target Ther 6:383

  • Li C, Jiang P, Wei S, Xu X, Wang J (2020) Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 19(1):1–23

    PubMed  PubMed Central  Google Scholar 

  • Lilleby W, Gaudernack G, Brunsvig PF et al (2017) Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother 66(7):891–901

    CAS  PubMed  Google Scholar 

  • Linch M, Papai Z, Takacs I, et al. (2021) 421 A first-in-human (FIH) phase I/IIa clinical trial assessing a ribonucleic acid lipoplex (RNA-LPX) encoding shared tumor antigens for immunotherapy of prostate cancer; preliminary analysis of PRO-MERIT. BMJ Spec J. https://doi.org/10.1136/jitc-2021-SITC2021.421

  • Lopes A, Vandermeulen G, Préat V (2019) Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 38(1):1–24

    Google Scholar 

  • McNeel DG, Eickhoff JC, Wargowski E, et al. (2022) Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J Immunother Cancer. 10:e004198

  • Miao L, Zhang Y, Huang L (2021) mRNA vaccine for cancer immunotherapy. Mol Cancer 20(1):1–23

    Google Scholar 

  • Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 27:16–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nevagi RJ, Toth I, Skwarczynski M (2018) Peptide-based vaccines. Peptide applications in biomedicine, biotechnology and bioengineering. Elsevier, New York, pp 327–58

    Google Scholar 

  • Noguchi M, Fujimoto K, Arai G et al (2021) A randomized phase III trial of personalized peptide vaccination for castration-resistant prostate cancer progressing after docetaxel. Oncol Rep 45(1):159–168

    PubMed  Google Scholar 

  • Ott PA, Hu Z, Keskin DB et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discovery 17(4):261–279

    CAS  PubMed  Google Scholar 

  • Rausch MP, Hastings KT (2019) Innate and adaptive immune responses to cancer. Fundamentals of cancer prevention. Springer, New York, pp 111–159

    Google Scholar 

  • Rezaei N, Keshavarz-Fathi M (2019) Vaccines for cancer immunotherapy: an evidence-based review on current status and future perspectives. Indian J Med Res. 150(5):514.

  • Romero P, Banchereau J, Bhardwaj N et al (2016) The human vaccines project: a roadmap for cancer vaccine development. Sci Trans Med. 8(334):334ps9

    Google Scholar 

  • Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin U, Türeci Ö (2018) Personalized vaccines for cancer immunotherapy. Science 359(6382):1355–1360

    CAS  PubMed  Google Scholar 

  • Saleh R, Elkord E (2020) Acquired resistance to cancer immunotherapy: role of tumor-mediated immunosuppression. Seminars in cancer biology. Elsevier, New York

    Google Scholar 

  • Schaeffer E, Srinivas S, Antonarakis ES et al (2021) NCCN guidelines insights: prostate cancer, version 1.2021: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 19(2):134–43

    CAS  Google Scholar 

  • Schuhmacher J, Heidu S, Balchen T, et al. (2020) Vaccination against RhoC induces long-lasting immune responses in patients with prostate cancer: results from a phase I/II clinical trial. J Immunother Cancer. 8:e001157

  • Seyfoori A, Shokrollahi Barough M, Mokarram P et al (2021) Emerging advances of nanotechnology in drug and vaccine delivery against viral associated respiratory infectious diseases (VARID). Int J Mol Sci 22(13):6937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA A Cancer J Clin. 69(1):7–34

    Google Scholar 

  • Singh MA, Shrivastava TP, Sharma A, Gupta M (2022) Chapter 15 Cancer immunotherapy: moving forward with peptide T-cell vaccines. In: Rahman M, Beg S, Almalki WH, Alhakamy NA, Choudhry H (eds) Nanotherapeutics in Cancer Vaccination and Challenges. Academic Press, Cambridge, pp 295–311

    Google Scholar 

  • Song Q, Zhang C-D, Wu X-H (2018) Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett. 196:11–21

    CAS  PubMed  Google Scholar 

  • Southwood S, Sidney J, Kondo A et al (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol 160(7):3363–3373

    CAS  PubMed  Google Scholar 

  • Swami U, McFarland TR, Nussenzveig R, Agarwal N (2020) Advanced prostate cancer: treatment advances and future directions. Trends in Cancer 6(8):702–715

    CAS  PubMed  Google Scholar 

  • Tan AC, Goubier A, Kohrt HE (2015) A quantitative analysis of therapeutic cancer vaccines in phase 2 or phase 3 trial. J Immunother Cancer 3(1):1–12

    Google Scholar 

  • Tannock IF, De Wit R, Berry WR et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512

    CAS  PubMed  Google Scholar 

  • Tardón MC, Allard M, Dutoit V, Dietrich P-Y, Walker PR (2019) Peptides as cancer vaccines. Curr Opin Pharmacol 47:20–26

    Google Scholar 

  • Tay RE, Richardson EK, Toh HC (2021) Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther 28(1):5–17

    CAS  PubMed  Google Scholar 

  • Thess A, Grund S, Mui BL et al (2015) Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther 23(9):1456–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toney N, Tsai Y-T, Redman J, et al. (2021) 582 Immune correlates from QuEST1 in men with castration-resistant prostate cancer. BMJ Spec J. https://doi.org/10.1136/jitc-2021-SITC2021.582

  • Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran T, Blanc C, Granier C et al (2019) Therapeutic cancer vaccine: building the future from lessons of the past. Seminars in Immunopathology. Springer, New York

    Google Scholar 

  • van Poelgeest MI, Welters MJ, Vermeij R et al (2016) Vaccination against oncoproteins of HPV16 for noninvasive vulvar/vaginal lesions: lesion clearance is related to the strength of the T-cell responsevaccine-induced lesion clearance relates to immune response. Clin Cancer Res 22(10):2342–2350

    PubMed  Google Scholar 

  • Walters JN, Ferraro B, Duperret EK et al (2017) A novel DNA vaccine platform enhances neo-antigen-like T cell responses against WT1 to break tolerance and induce anti-tumor immunity. Mol Ther 25(4):976–988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wculek SK, Cueto FJ, Mujal AM et al (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20(1):7–24

    CAS  PubMed  Google Scholar 

  • Wilgenhof S, Van Nuffel A, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24(10):2686–2693

    CAS  PubMed  Google Scholar 

  • Yoshimura K, Minami T, Nozawa M et al (2016) A phase 2 randomized controlled trial of personalized peptide vaccine immunotherapy with low-dose dexamethasone versus dexamethasone alone in chemotherapy-naive castration-resistant prostate cancer. Eur Urol 70(1):35–41

    CAS  PubMed  Google Scholar 

  • Yunger S, El Bar A, Zeltzer L-A et al (2019) Tumor-infiltrating lymphocytes from human prostate tumors reveal anti-tumor reactivity and potential for adoptive cell therapy. Oncoimmunology. 8(12):e1672494

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Garg S, Eldi P et al (2016) Targeting prostate cancer cells with genetically engineered polypeptide-based micelles displaying gastrin-releasing peptide. Int J Pharm 513(1–2):270–279

    CAS  PubMed  Google Scholar 

  • Zhu S, Luo Z, Li X et al (2021) Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 12(1):54

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Hamadan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

AK collected the data. AK,MA,PM,YP ,and SA wrote the manuscript in consultation with all authors.

Corresponding author

Correspondence to Saeid Afshar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezrian, A., Ahmadi, M., Mokarram, P. et al. A Review of Recent Advances in Peptide-Based Anticancer Therapeutic Vaccines and Nanovaccines in Prostate Cancer. Int J Pept Res Ther 29, 70 (2023). https://doi.org/10.1007/s10989-023-10542-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-023-10542-1

Keywords

Navigation