Augmenting Peptide Flexibility by Inserting Gamma-Aminobutyric Acid (GABA) in Their Sequence

Abstract

Peptide flexibility is a determining factor in designing peptide-based drugs and in linker peptides. The flexibility is roughly inversely proportional to the size of the amino acid side chains in a peptide sequence. Glycine homo repeats are, therefore, the most flexible oligopeptides. We synthesized three oligopeptides: a relatively rigid peptide, His-(Arg)4-Trp (1), a flexible peptide, His-(Gly)4-Trp (2), and a “super-flexible” peptide; His-Gly-(GABA)-Gly-Trp (3) in which the central Gly-Gly unit in 2 was substituted by a γ-aminobutyric acid (GABA) linker. The only structural difference between 2 and 3 is that an amide bond in 2 is replaced by –CH2– units in 3. The frequency of end-to-end collisions, which serves as indicator of peptide flexibility, was measured fluorometrically. For comparing peptide flexibility, fluorescence emission spectra of their tryptophan residues were compared. Upon end-to-end collision, the N-terminal histidine residue efficiently quenches the fluorescence emission of the C-terminal tryptophan residue. The quenching rate is directly proportional to the peptide flexibility. The observed strongly increased flexibility in the γ-aminobutyric acid-containing peptide is due to the substitution of a single, rotationally restricted amide bond. Our result demonstrates the importance of amid bonds in limiting peptide dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdali N, Barth E, Norouzy A, Schulz R et al (2013) Corynebacterium jeikeium jk0268 constitutes for the 40 amino acid long PorACj, which forms a homooligomeric and anion-selective cell wall channel. PloS one 8:e75651. https://doi.org/10.1371/journal.pone.0075651

    Article  CAS  Google Scholar 

  2. Ahmed MI, Harper JB, Hunter L (2014) Incrementally increasing the length of a peptide backbone: effect on macrocyclisation efficiency. Org Biomol Chem 12:4598–4601. https://doi.org/10.1039/c4ob00492b

    Article  CAS  Google Scholar 

  3. Alfthan K, Takkinen K, Sizmann D, Soderlund H, Teeri TT (1995) Properties of a single-chain antibody containing different linker peptides. Protein Eng 8:725–731. https://doi.org/10.1093/protein/8.7.725

    Article  CAS  Google Scholar 

  4. Allan RD, Johnston GA (1983) Synthetic analogs for the study of GABA as a neurotransmitter. Med Res Rev 3:91–118. https://doi.org/10.1002/med.2610030202

    Article  CAS  Google Scholar 

  5. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. J Protein Eng 14:529–532. https://doi.org/10.1093/protein/14.8.529

    Article  CAS  Google Scholar 

  6. Babii O, Afonin S, Schober T, Komarov IV, Ulrich AS (2017) Flexibility vs rigidity of amphipathic peptide conjugates when interacting with lipid bilayers. Biochim Biophys Acta Biomembr 1859:2505–2515. https://doi.org/10.1016/j.bbamem.2017.09.021

    Article  CAS  Google Scholar 

  7. Bieraugel H, Schoemaker HE, Hiemstra H, van Maarseveen JH (2003) A pincer auxiliary to force difficult lactamisations. Org Biomol Chem 1:1830–1832. https://doi.org/10.1039/b303836j

    Article  CAS  Google Scholar 

  8. Casier R, Duhamel J (2018) Pyrene excimer fluorescence as a direct and easy experimental means to characterize the length scale and internal dynamics of polypeptide foldons. Macromolecules 51:3450–3457. https://doi.org/10.1021/acs.macromol.8b00459

    Article  CAS  Google Scholar 

  9. Evers TH, van Dongen EM, Faesen AC, Meijer E, Merkx M (2006) Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry 45:13183–13192. https://doi.org/10.1021/bi061288t

    Article  CAS  Google Scholar 

  10. Farhangi S, Duhamel J (2016) Long range polymer chain dynamics studied by fluorescence quenching. J Macromol 49:6149–6162. https://doi.org/10.1021/acs.macromol.6b01295

    Article  CAS  Google Scholar 

  11. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73. https://doi.org/10.1186/s12916-016-0623-5

    Article  CAS  Google Scholar 

  12. Hall T, Whitton G, Casier R, Gauthier M, Duhamel J (2018) Arborescent poly(L-glutamic acid)s as standards to study the dense interior of polypeptide mesoglobules by pyrene excimer fluorescence. Macromolecules 51:7914–7923. https://doi.org/10.1021/acs.macromol.8b01721

    Article  CAS  Google Scholar 

  13. Handl HL, Sankaranarayanan R, Josan JS, Vagner J, Mash EA, Gillies RJ, Hruby VJ (2007) Synthesis and evaluation of bivalent NDP-α-MSH (7) peptide ligands for binding to the human melanocortin receptor 4 (hMC4R). Bioconjug Chem 18:1101–1109. https://doi.org/10.1021/bc0603642

    Article  CAS  Google Scholar 

  14. Hassan C, Chabrol E, Jahn L, Kester MG et al (2015) Naturally processed non-canonical HLA-A*02:01 presented peptides. J Biol Chem 290:2593–2603. https://doi.org/10.1074/jbc.M114.607028

    Article  CAS  Google Scholar 

  15. Hellenkamp B, Schmid S, Doroshenko O, Opanasyuk O et al (2018) Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat Methods 15:669–676. https://doi.org/10.1038/s41592-018-0085-0

    Article  CAS  Google Scholar 

  16. Hoppes R, Oostvogels R, Luimstra JJ, Wals K et al (2014) Altered peptide ligands revisited: vaccine design through chemically modified HLA-A2-restricted T cell epitopes. J Immunol 193:4803–4813. https://doi.org/10.4049/jimmunol.1400800

    Article  CAS  Google Scholar 

  17. Huang F, Nau WM (2003) A conformational flexibility scale for amino acids in peptides. Angew Chem Int Ed Engl 42:2269–2272. https://doi.org/10.1002/Anie.200250684

    Article  CAS  Google Scholar 

  18. Hudgins RR, Huang F, Gramlich G, Nau WM (2002) A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides. J Am Chem Soc 124:556–564. https://doi.org/10.1021/ja010493n

    Article  CAS  Google Scholar 

  19. Hunter L, Chung JH (2011) Total synthesis of unguisin A. J Org Chem 76:5502–5505. https://doi.org/10.1021/jo200813a

    Article  CAS  Google Scholar 

  20. Jacob MH, Dsouza RN, Ghosh I, Norouzy A, Schwarzlose T, Nau WM (2013) Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield. J Phys Chem B 117:185–198. https://doi.org/10.1021/jp310381f

    Article  CAS  Google Scholar 

  21. Kalafatovic D, Giralt E (2017) Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules.https://doi.org/10.3390/molecules22111929

    Article  Google Scholar 

  22. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd ed. Springer, New York

    Book  Google Scholar 

  23. Liu L, Fang Y, Wu J (2013) Flexibility is a mechanical determinant of antimicrobial activity for amphipathic cationic α-helical antimicrobial peptides. Biochim Biophys Acta Biomembr 1828:2479–2486

    Article  CAS  Google Scholar 

  24. Ma B, Tsai CJ, Haliloğlu T, Nussinov R (2011) Dynamic allostery: linkers are not merely flexible. J Struct 19:907–917. https://doi.org/10.1016/j.str.2011.06.002

    Article  CAS  Google Scholar 

  25. Malmstrøm J (1999) Unguisins A and B: new cyclic peptides from the marine-derived fungus Emericella unguis. J Nat Product 62:787–789. https://doi.org/10.1021/np980539z

    Article  Google Scholar 

  26. Malmstrøm J, Ryager A, Anthoni U, Nielsen PH (2002) Unguisin C, a GABA-containing cyclic peptide from the fungus Emericella unguis. Phytochemistry 60:869–872. https://doi.org/10.1016/s0031-9422(02)00150-4

    Article  Google Scholar 

  27. Marino J, Buholzer KJ, Zosel F, Nettels D, Schuler B (2018) Charge interactions can dominate coupled folding and binding on the ribosome. Biophys J 115:996–1006. https://doi.org/10.1016/j.bpj.2018.07.037

    Article  CAS  Google Scholar 

  28. Matsiko A (2018) Cancer immunotherapy making headway. Nat Mater 17:472. https://doi.org/10.1038/s41563-018-0091-8

    Article  CAS  Google Scholar 

  29. Nelson DL, Cox MM (2017) Lehninger principles of biochemistry, 7th ed. Freeman, New York. https://doi.org/10.1002/bmb.2005.494033010419

    Book  Google Scholar 

  30. Norouzy A (2015) Fluorescent probes in biomolecular systems: information on peptide dynamics and analyte uptake into live cells. Dissertation, Jacobs University Bremen

  31. Norouzy A, Qujeq D, Habibi-Rezaei M (2009) The inhibitory effect of dissolved carbaryl in dioxane on physically adsorbed acetylcholinesterase. React Kinet Catal Lett 98:19391. https://doi.org/10.1007/s11144-009-0094-1

    Article  CAS  Google Scholar 

  32. Norouzy A, Habibi-Rezaei M, Qujeq D, Vatani M, Badiei A (2010) Adsorptive immobilization of acetylcholine esterase on octadecyl substituted porous silica: optical bio-analysis of carbaryl. Bull Korean Chem Soc 31:157–161. https://doi.org/10.5012/bkcs.2010.31.01.157

    Article  CAS  Google Scholar 

  33. Norouzy A, Assaf KI, Zhang S, Jacob MH, Nau WM (2015a) Coulomb repulsion in short polypeptides. J Phys Chem B 119:33–43. https://doi.org/10.1021/jp508263a

    Article  CAS  Google Scholar 

  34. Norouzy A, Qujeq D, Habibi-Rezaei M (2015b) Evaluation and characterization of free and immobilized acethylcholinesterase with fluorescent probe, differential scanning calorimetry and docking. Int Biol Biomed J 1:103–111

    Google Scholar 

  35. Ntwasa M (2012) Cationic peptide interactions with biological macromolecules. Binding protein. Intech, London

    Google Scholar 

  36. Oh KJ, Cash KJ, Hugenberg V, Plaxco KW (2007a) Peptide beacons: a new design for polypeptide-based optical biosensors. Bioconjug Chem 18:607–609. https://doi.org/10.1021/bc060319u

    Article  CAS  Google Scholar 

  37. Oh KJ, Cash KJ, Lubin AA, Plaxco KW (2007b) Chimeric peptide beacons: a direct polypeptide analog of DNA molecular beacons. Chem Commun 0:4869–4871. https://doi.org/10.1039/B709776J

    Article  CAS  Google Scholar 

  38. Oh KJ, Cash KJ, Plaxco KW (2009) Beyond molecular beacons: optical sensors based on the binding-induced folding of proteins and polypeptides. Chemistry 15:2244–2251. https://doi.org/10.1002/chem.200701748

    Article  CAS  Google Scholar 

  39. Pais VF, Alcaide MM, López-Rodríguez R, Collado D et al (2015) Strongly emissive and photostable four-coordinate organoboron N,C chelates and their use in fluorescence microscopy. Chem Eur J 21:15369–15376. https://doi.org/10.1002/chem.201501626

    Article  CAS  Google Scholar 

  40. Qian Z, Martyna A, Hard RL, Wang J et al (2016) Discovery and mechanism of highly efficient cyclic cell-penetrating peptides. Biochemistry 55:2601–2612. https://doi.org/10.1021/acs.biochem.6b00226

    Article  CAS  Google Scholar 

  41. Qujeq D, Roushan T, Norouzy A, Habibi-Rezaei M, Mehdinejad-Shani (2012) Effects of dichlorvos and carbaryl on the activity of free and immobilized acetylcholinesterase. Toxicol Ind Health 28:291–295. https://doi.org/10.1177/0748233711410907

    Article  CAS  Google Scholar 

  42. Rajamani D, Thiel S, Vajda S, Camacho CJ (2004) Anchor residues in protein–protein interactions. Proc Natl Acad Sci U S 101:11287–11292. https://doi.org/10.1073/pnas.0401942101

    Article  CAS  Google Scholar 

  43. Rasmussen SG, DeVree BT, Zou Y, Kruse AC et al (2011) Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549. https://doi.org/10.1038/nature10361

    Article  CAS  Google Scholar 

  44. Rezaei-Ghaleh N, Parigi G, Soranno A, Holla A et al (2018) Local and global dynamics in intrinsically disordered synuclein. Angew Chem Int Ed Engl 57:15262–15266. https://doi.org/10.1002/anie.201808172

    Article  CAS  Google Scholar 

  45. Roccatano D, Sahoo H, Zacharias M, Nau WM (2007) Temperature dependence of looping rates in a short peptide. J Phys Chem B 111:2639–2646. https://doi.org/10.1021/Jp066418m

    Article  CAS  Google Scholar 

  46. Roncevic T, Vukicevic D, Ilic N, Krce L et al (2018) Antibacterial activity affected by the conformational flexibility in glycine-lysine based alpha-helical antimicrobial peptides. J Med Chem 61:2924–2936. https://doi.org/10.1021/acs.jmedchem.7b01831

    Article  CAS  Google Scholar 

  47. Sahoo H, Roccatano D, Zacharias M, Nau WM (2006) Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 angstrom domain. J Am Chem Soc 128:8118–8119. https://doi.org/10.1021/Ja062293n

    Article  CAS  Google Scholar 

  48. Santos FMF, Domínguez Z, Alcaide MM, Matos AI et al (2018) Highly efficient energy transfer cassettes by assembly of boronic acid derived salicylidenehydrazone complexes. ChemPhotoChem 2:1038–1045. https://doi.org/10.1002/cptc.201800150

    Article  CAS  Google Scholar 

  49. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214. https://doi.org/10.1016/j.cell.2015.03.030

    Article  CAS  Google Scholar 

  50. Sudo K, Niikura K, Iwaki K, Kohyama S, Fujiwara K, Doi N (2017) Human-derived fusogenic peptides for the intracellular delivery of proteins. J Control Release 255:1–11. https://doi.org/10.1016/j.jconrel.2017.03.398

    Article  CAS  Google Scholar 

  51. Wang X, Nau WM (2004) Kinetics of end-to-end collision in short single-stranded nucleic acids. J Am Chem Soc 126:808–813. https://doi.org/10.1021/ja038263r

    Article  CAS  Google Scholar 

  52. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524. https://doi.org/10.1038/nchem.1062

    Article  CAS  Google Scholar 

  53. Yin L, Stern LJ (2014) A novel method to measure HLA-DM-susceptibility of peptides bound to MHC class II molecules based on peptide binding competition assay and differential IC50 determination. J Immunol Methods 406:21–33. https://doi.org/10.1016/j.jim.2014.02.008

    Article  CAS  Google Scholar 

  54. Zhang T, Taylor SD, Palmer M, Duhamel J (2016) Membrane binding and oligomerization of the lipopeptide A54145 studied by pyrene fluorescence. Biophys J 111:1267–1277. https://doi.org/10.1016/j.bpj.2016.07.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institute of Genetic Engineering and Biotechnology (NIGEB) for supporting this work. W.M.N. thanks the Deutsche Forschungsgemeinschaft (DFG, NA 686/9) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir Norouzy.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource (DOCX 156.4 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahabi, M., Hajihosseini, R., Nau, W.M. et al. Augmenting Peptide Flexibility by Inserting Gamma-Aminobutyric Acid (GABA) in Their Sequence. Int J Pept Res Ther 26, 2633–2640 (2020). https://doi.org/10.1007/s10989-020-10054-2

Download citation

Keywords

  • Fluorescence
  • Dynamics
  • Quenching
  • Amino acids
  • Peptide folding