Skip to main content

Advertisement

Log in

Anticancer Activity and Mechanism of Action of kla-TAT Peptide

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Conjugation of cell-penetrating peptides to anticancer peptides is an effective strategy to enhance tumor treatment. The hybrid peptide, kla-TAT, by attaching the TAT peptide to the C-terminus of the pro-apoptotic peptide kla exhibited strong anticancer activity when co-administration with other peptide, but the systematic mechanism was not clear. In this study, the mechanisms of action of kla-TAT including the uptake pathway, distribution in cytoplasm, apoptosis-inducing ability and micro-morphology were investigated. The results indicated that the hybrid peptide internalized into A549 cells through two transmembrane mechanisms: endocytosis mediated by the clathrin-mediated endocytosis route and the rapid membrane disruption mechanism. Peptides that were endocytosed could interact with the mitochondrial membrane, while peptides internalized by disrupting the cell membrane caused disruption of the mitochondrial membrane. Thus, the hybrid kla-TAT peptide transfers through the cell membrane, inducing apoptosis by destroying the mitochondrial membrane and causethe expression of cyclin-D1 down-regulation. Meanwhile, the changes of the micro-morphology of the cancer cells was detected using atomic force microscope (AFM) and scanning electron microscope (SEM), which provided the visualized evidence for the mechanism of the peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alderson RF, Kreitman RJ, Chen T, Yeung P, Herbst R, Fox JA, Pastan I (2009) CAT-8015: a second-generation pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies. Clin Cancer Res 15(3):832–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braet F, Seynaeve C, De Zanger R, Wisse E (1998) Imaging surface and submembranous structures with the atomic force microscope: a study on living cancer cells, fibroblasts and macrophages. J Microsc 190(Pt 3):328–338

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Braun GB, Luo X, Sugahara KN, Teesalu T, Ruoslahti E (2013) Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Res 73(4):1352–1361

    Article  CAS  PubMed  Google Scholar 

  • De GJ, Ko JK, Tan T, Zhu H, Li HC, Ma JJ (2014) Amphipathic tail-anchoring peptide is a promising therapeutic agent for prostate cancer treatment. Oncotarget 5(17):7734–7747

    Article  PubMed  PubMed Central  Google Scholar 

  • del Rio G, Castro-Obregon S, Rao R, Ellerby HM, Bredesen DE (2001) APAP, a sequence-pattern recognition approach identifies substance P as a potential apoptotic peptide. FEBS Lett 494(3):213–219

    Article  PubMed  Google Scholar 

  • Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5(9):1032–1038

    Article  CAS  PubMed  Google Scholar 

  • Fang SL, Fan TC, Fu HW, Chen CJ, Hwang CS, Hung TJ, Lin LY, Chang MD (2013) A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS ONE 8(3):e57318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Cheng J, Wang J, Zhang Q, Liu M, Gong R, Wang P, Zhang X, Feng Y, Lan W, Gong Z, Tang C, Wong J, Yang H, Cao C, Xu Y (2016) Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat Commun 7:11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  PubMed  Google Scholar 

  • Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2):171–177

    Article  CAS  PubMed  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides: a review. Front Microbiol 4:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautam A, Kapoor P, Chaudhary K, Kumar R, Raghava GPS, Consort OSDD (2014) Tumor homing peptides as molecular probes for cancer therapeutics, diagnostics and theranostics. Curr Med Chem 21(21):2367–2391

    Article  CAS  PubMed  Google Scholar 

  • Goldar S, Khaniani MS, Derakhshan SM, Baradaran B (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 16(6):2129–2144

    Article  PubMed  Google Scholar 

  • Guidotti G, Brambilla L, Rossi D (2017) Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 38(4):406–424

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Yan Q, Zhao J, Wang W, Huang Y, Chen Y (2015) TAT modification of alpha-helical anticancer peptides to improve specificity and efficacy. PLoS ONE 10(9):e0138911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845

    PubMed  PubMed Central  Google Scholar 

  • Hu C, Chen X, Huang Y, Chen Y (2018a) Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci Rep 8(1):2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Chen X, Huang Y, Chen Y (2018b) Co-administration of kla-TAT peptide and iRGD to enhance the permeability on A549 3D multiple sphere cells and accumulation on xenograft mice. Chem Biol Drug Des 92(2):1567–1575

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Chen X, Huang Y, Chen Y (2018c) Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis 23(2):132–142

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Hao D, Chen Y, Xu Y, Tan J, Huang Y, Li F (2011) Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an alpha-helical antibacterial peptide against bacteria. Peptides 32(7):1488–1495

    Article  CAS  PubMed  Google Scholar 

  • Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM, Becker CL, McLaughlin ML (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39(16):3107–3113

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Lv Y, Cao H, Yao J, Zhou J, He W, Yin L (2016) Core-shell nanocarriers with high paclitaxel loading for passive and active targeting. Sci Rep 6:27559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouan E, Le Vee M, Denizot C, Da Violante G, Fardel O (2014) The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCTs) 1 and 2. Fundam Clin Pharmacol 28(1):65–77

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Kim S, Youn H, Chung JK, Shin DH, Lee K (2011) The cell penetrating ability of the proapoptotic peptide, KLAKLAKKLAKLAK fused to the N-terminal protein transduction domain of translationally controlled tumor protein MIIYRDLISH. Biomaterials 32(22):5262–5268

    Article  CAS  PubMed  Google Scholar 

  • Rajah T, Chow SC (2014) The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress. Toxicol Appl Pharmacol 278(2):100–106

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Ryu JS (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21(9):560–570

    Article  CAS  PubMed  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590

    Article  CAS  PubMed  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107(1):378–383

    Article  PubMed  Google Scholar 

  • Watkins CL, Brennan P, Fegan C, Takayama K, Nakase I, Futaki S, Jones AT (2009) Cellular uptake, distribution and cytotoxicity of the hydrophobic cell penetrating peptide sequence PFVYLI linked to the proapoptotic domain peptide PAD. J Control Release 140(3):237–244

    Article  CAS  PubMed  Google Scholar 

  • Xiong S, Mu T, Wang G, Jiang X (2014) Mitochondria-mediated apoptosis in mammals. Protein Cell 5(10):737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Harashima N, Moritani T, Huang W, Harada M (2015) The roles of ROS and caspases in TRAIL-induced apoptosis and necroptosis in human pancreatic cancer cells. PLoS ONE 10(5):e0127386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinchuk V, Grossenbacher-Zinchuk O (2009) Recent advances in quantitative colocalization analysis: focus on neuroscience. Prog Histochem Cytochem 44(3):125–172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Mega-Project for innovative Drugs of China (2017ZX09309001 to Y. X. C.), the Natural Science Foundation of Jilin Province of China (20180101250 JC to Y.B.H) and the “13th Five-year” Science and Technology Project of Jilin Provincial Department of Education (No. JJKH20180178 KJ to Y.B.H).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: CHH and YXC Performed the experiments: CHH, XLC, YNZ, WJH, QL and YXH Analyzed the data: CHH, YBH and YXC Contributed reagents/materials/analysis tools: CHH, YBH and YXC. Wrote the paper: CHH and YXC.

Corresponding author

Correspondence to Yuxin Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 7015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Hu, C., Zhang, Y. et al. Anticancer Activity and Mechanism of Action of kla-TAT Peptide. Int J Pept Res Ther 26, 2285–2296 (2020). https://doi.org/10.1007/s10989-020-10019-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10019-5

Keywords

Navigation