Skip to main content
Log in

Expression and Purification of Membrane Proteins in Different Hosts

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Membrane proteins play important functions, such as cellular communication and transferring materials in the cell. Many membrane proteins are involved in human diseases. However, little information is available on their structure, stability and folding. To study their structure, membrane proteins should primarily be produces in large amounts. However, production of these proteins is limited by various technical issues. Developing novel strategies to circumvent these issues seems to be highly important to proceed in membrane protein science. In this review, we have summarized the recent findings which can promote membrane protein expression and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelrasoul A, Doan H, Lohi A (2017) Aquaporin biomimetic membranes. Biomimetic and bioinspired membranes for new frontiers in sustainable water treatment technology. Rejika, InTech, p 125

    Google Scholar 

  • Alvarez FJ, Orelle C, Huang Y, Bajaj R, Everly RM, Klug CS, Davidson AL (2015) Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol Microbiol 98(5):878–894

    CAS  Google Scholar 

  • Anandan A, Vrielink A (2016) Detergents in membrane protein purification and crystallisation. In: Anandan A, Vrielink A (eds) The next generation in membrane protein structure determination. Springer, Cham, pp 13–28

    Google Scholar 

  • Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1Fo ATP synthase. FEBS Lett 482(3):215–219

    CAS  Google Scholar 

  • Arunkarthick S, Asokan R, Aravintharaj R, Niveditha M, Kumar NK (2017) A review of insect cell culture: establishment, maintenance and applications in entomological research. J Entomol Sci 52(3):261–273

    Google Scholar 

  • Backovic M, Krey T (2016) Stable Drosophila cell lines: an alternative approach to exogenous protein expression. In: Backovic M, Krey T (eds) Baculovirus and insect cell expression protocols. Humana Press, New York, pp 349–358

    Google Scholar 

  • Baneres JL, Martin A, Hullot P, Girard JP, Rossi JC, Parello J (2003) Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J Mol Biol 329(4):801–814

    CAS  Google Scholar 

  • Bazmara H, Rasooli I, Jahangiri A, Sefid F, Astaneh SD, Payandeh Z (2019) Antigenic properties of iron regulated proteins in Acinetobacter baumannii: an in silico approach. Int J Pept Res Ther 25(1):205–213

    CAS  Google Scholar 

  • Byrne B (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32:9–17

    CAS  Google Scholar 

  • Cámara E, Landes N, Albiol J, Gasser B, Mattanovich D, Ferrer P (2017) Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Sci Rep 7:44302

    Google Scholar 

  • Cano-Garrido O, Rueda FL, Sànchez-García L, Ruiz-Ávila L, Bosser R, Villaverde A, García-Fruitós E (2014) Expanding the recombinant protein quality in Lactococcus lactis. Microb Cell Fact 13(1):167

    Google Scholar 

  • Cappuccio JA, Blanchette CD, Sulchek TA, Arroyo ES, Kralj JM, Hinz AK, Kuhn EA, Chromy BA, Segelke BW, Rothschild KJ, Fletcher JE (2008) Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol Cell Proteom 7(11):2246–2253

    CAS  Google Scholar 

  • Centeno F, Deschamps S, Lompré AM, Anger M, Moutin MJ, Dupont Y, Palmgren MG, Villalba JM, Møller JV, Falson P, le Maire M (1994) Expression of the sarcoplasmic reticulum Ca2+-ATPase in yeast. FEBS Lett 354(1):117–122

    CAS  Google Scholar 

  • Chakraborty R, Xu B, Bhullar RP, Chelikani P (2015) Expression of G protein-coupled receptors in mammalian cells. Methods Enzymol 556:267–281

    CAS  Google Scholar 

  • Chandler KB, Costello CE (2016) Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 37(11):1407–1419

    CAS  Google Scholar 

  • Cheng P, Zhu S, Jun L, Huang L, Hong Y (2015) Production of DUSP1 protein using the baculovirus insect cell expression system and its in vitro effects on cancer cells. Int J Mol Med 35(6):1715–1719

    CAS  Google Scholar 

  • Chi H, Wang X, Li J, Ren H, Huang F (2015) Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES. Sci Rep 5:17037

    CAS  Google Scholar 

  • Chowdhury A, Feng R, Tong Q, Zhang Y, Xie XQ (2012) Mistic and TarCF as fusion protein partners for functional expression of the cannabinoid receptor 2 in Escherichia coli. Protein Expr Purif 83(2):128–134

    CAS  Google Scholar 

  • Coughlan S, Mulhair P, Sanders M, Schonian G, Cotton JA, Downing T (2017) The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci Rep 7:43747

    Google Scholar 

  • Cunningham F, Deber CM (2007) Optimizing synthesis and expression of transmembrane peptides and proteins. Methods 41(4):370–380

    CAS  Google Scholar 

  • Czapla M, Sarewicz M, Osyczka A (2012) Fusing proteins as an approach to study bioenergetic enzymes and processes. Biochim Biophys 1817(10):1847–1851

    CAS  Google Scholar 

  • Dalton AC, Barton WA (2014) Over-expression of secreted proteins from mammalian cell lines. Protein Sci 23(5):517–525

    CAS  Google Scholar 

  • Deniaud A, Bernaudat F, Frelet-Barrand A, Juillan-Binard C, Vernet T, Rolland N, Pebay-Peyroula E (2011) Expression of a chloroplast ATP/ADP transporter in E. coli membranes: behind the Mistic strategy. Biochim Biophys Acta 1808(8):2059–2066

    CAS  Google Scholar 

  • Deupi X (2014) Relevance of rhodopsin studies for GPCR activation. Biochim Biophys Acta 1837(5):674–682

    CAS  Google Scholar 

  • Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7(4):971–981

    CAS  Google Scholar 

  • Doukas A, Karena E, Botou M, Papakostas K, Papadaki A, Tziouvara O, Xingi E, Frillingos S (1861) Boleti H (2019) Heterologous expression of the mammalian sodium-nucleobase transporter rSNBT1 in Leishmania tarentolae. Biochim Biophys Acta 9:1546–1557

    Google Scholar 

  • Eroglu Ç, Cronet P, Panneels V, Beaufils P, Sinning I (2002) Functional reconstitution of purified metabotropic glutamate receptor expressed in the fly eye. EMBO Rep 3(5):491–496

    CAS  Google Scholar 

  • Fenz SF, Sachse R, Schmidt T, Kubick S (2014) Cell-free synthesis of membrane proteins: tailored cell models out of microsomes. Biochim Biophys Acta 5:1382–1388

    Google Scholar 

  • Forn-Cuní G, Varela M, Pereiro P, Novoa B, Figueras A (2017) Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep 7:41905

    Google Scholar 

  • Gaenzle MG (2015) Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2:106–117

    Google Scholar 

  • Ganji M, Khalili S, Mard-Soltani M, Khalesi B, Karkhah A, Amani J (2019) A precisely designed immunotoxin against VCAM1 consisting of a humanized antibody variable domain fused to granzyme: an in silico approach. Int J Pept Res Ther. https://doi.org/10.1007/s10989-019-09822-6

    Article  Google Scholar 

  • Garamella J, Marshall R, Rustad M, Noireaux V (2016) The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol 5(4):344–355

    CAS  Google Scholar 

  • Ge J, Jin L, Tang X, Gao D, An Q, Ping W (2014) Optimization of eGFP expression using a modified baculovirus expression system. J Biotechnol 173:41–46

    CAS  Google Scholar 

  • Gordon E, Horsefield R, Swarts HG, de Pont JJ, Neutze R, Snijder A (2008) Effective high-throughput overproduction of membrane proteins in Escherichia coli. Protein Expr Purif 62(1):1–8

    CAS  Google Scholar 

  • Grebowski J, Studzian M, Bartosz G (1858) Pulaski L (2016) Leishmania tarentolae as a host for heterologous expression of functional human ABCB6 transporter. Biochim Biophys Acta 11:2617–2624

    Google Scholar 

  • Griffin A, Krasniak C, Baraban SC (2016) Advancing epilepsy treatment through personalized genetic zebrafish models. Prog Brain Res 226:195–207

    CAS  Google Scholar 

  • Gutierrez AN, McDonald PH (2018) GPCRs: emerging anti-cancer drug targets. Cell Signal 41:65–74

    Google Scholar 

  • Harbers M (2014) Wheat germ systems for cell-free protein expression. FEBS Lett 588(17):2762–2773

    CAS  Google Scholar 

  • He W, Scharadin TM, Saldana M, Gellner C, Hoang-Phou S, Takanishi C, Hura GL, Tainer JA, Carraway KL III, Henderson PT, Coleman MA (2015) Cell-free expression of functional receptor tyrosine kinases. Sci Rep 5:12896

    CAS  Google Scholar 

  • Hooda Y, Lai CC, Judd A, Buckwalter CM, Shin HE, Gray-Owen SD, Moraes TF (2016) Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria. Nat Microbiol 1(4):16009

    CAS  Google Scholar 

  • Hu J, Qin H, Gao FP, Cross TA (2011) A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification. Protein Expr Purif 80(1):34–40

    CAS  Google Scholar 

  • Huang W, Yao Y, Wang S, Xia Y, Yang X, Long Q, Sun W, Liu C, Li Y, Chu X, Bai H (2016) Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii. Sci Rep 8(6):20724

    Google Scholar 

  • Hunte C (2005) Specific protein–lipid interactions in membrane proteins. Biochem Soc Trans 33:938–942

    CAS  Google Scholar 

  • Ishchenko A, Abola EE, Cherezov V (2017) Crystallization of membrane proteins: an overview. Protein Crystallogr 1607:117–141

    CAS  Google Scholar 

  • Jahangiri A, Rasooli I, Owlia P, Fooladi AA, Salimian J (2018a) An integrative in silico approach to the structure of Omp33-36 in Acinetobacter baumannii. Comput Biol Chem 72:77–86

    CAS  Google Scholar 

  • Jahangiri A, Amani J, Halabian R (2018b) In silico analyses of staphylococcal enterotoxin B as a DNA vaccine for cancer therapy. Int J Pept Res Ther 24(1):131–142

    CAS  Google Scholar 

  • Jahangiri A, Owlia P, Rasooli I, Salimian J, Derakhshanifar E, Naghipour Erami A, Darzi Eslam E, Darvish Alipour Astaneh S (2019) Specific egg yolk antibodies (IgY) confer protection against Acinetobacter baumannii in a murine pneumonia model. J Appl Microbiol 126(2):624–632

    CAS  Google Scholar 

  • Jiko C, Davies KM, Shinzawa-Itoh K, Tani K, Maeda S, Mills DJ, Tsukihara T, Fujiyoshi Y, Kühlbrandt W, Gerle C (2015) Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. Elife 4:e06119

    Google Scholar 

  • Jones JD (2015) Leishmania tarentolae: an alternative approach to the production of monoclonal antibodies to treat emerging viral infections. Infect Dis Poverty 4(1):8

    Google Scholar 

  • Jung SJ, Jung Y, Kim H (2019) Proper insertion and topogenesis of membrane proteins in the ER depends on Sec63. Biochim Biophys Acta. https://doi.org/10.1016/j.bbagen.2019.06.005

    Article  Google Scholar 

  • Kahaki FA, Babaeipour V, Memari HR, Mofid MR (2014) High overexpression and purification of optimized bacterio-opsin from Halobacterium Salinarum R1 in E. coli. Appl Biochem Biotechnol 174(4):1558–1571

    CAS  Google Scholar 

  • Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523(7562):561

    CAS  Google Scholar 

  • Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required. Trends Biotechnol 27(8):455–460

    CAS  Google Scholar 

  • Keller JM, Keller ET (2018) The use of mature zebrafish (Danio rerio) as a model for human aging and disease. In: Keller JM, Keller ET (eds) Conn's handbook of models for human aging. Academic Press, Cambridge, pp 351–359

    Google Scholar 

  • Khalili S, Rasaee MJ, Bamdad T, Mard-Soltani M, Ghalehni MA, Jahangiri A, Pouriayevali MH, Aghasadeghi MR, Malaei F (2018) A novel molecular design for a hybrid phage-DNA construct against DKK1. Mol Biotechnol 60(11):833–842

    CAS  Google Scholar 

  • Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A (2017) Humanizing glycosylation pathways in eukaryotic expression systems. World J Microbiol Biotechnol 33(1):4

    Google Scholar 

  • Kim H, Lee HS, Park H, Lee DH, Boles E, Chung D, Park YC (2017) Enhanced production of xylitol from xylose by expression of B. subtilis arabinose: H+ symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 107:7–14

    CAS  Google Scholar 

  • King MS, Boes C, Kunji ER (2015) Membrane protein expression in Lactococcus lactis. Methods Enzymol 556:77–97

    CAS  Google Scholar 

  • Koch C, Neumann P, Valerius O, Feussner I, Ficner R (2016) Crystal structure of alcohol oxidase from Pichia pastoris. PLoS ONE 11(2):e0149846

    Google Scholar 

  • Kodedová M, Sychrová H (2015) Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS ONE 10(9):e0139306

    Google Scholar 

  • Kofuku Y, Yokomizo T, Imai S, Shiraishi Y, Natsume M, Itoh H, Inoue M, Nakata K, Igarashi S, Yamaguchi H, Mizukoshi T (2018) Deuteration and selective labeling of alanine methyl groups of β 2-adrenergic receptor expressed in a baculovirus-insect cell expression system. J Biomol NMR 71(3):185–192

    CAS  Google Scholar 

  • Kota J, Ljungdahl PO (2005) Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J Cell Biol 168(1):79–88

    CAS  Google Scholar 

  • Kühlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13(1):89

    Google Scholar 

  • Kumari P, Ghosh E, Shukla AK (2015) Emerging approaches to GPCR ligand screening for drug discovery. Trends Mol Med 21(11):687–701

    CAS  Google Scholar 

  • Kuruma Y, Ueda T (2015) The PURE system for the cell-free synthesis of membrane proteins. Nat Protoc 10(9):1328

    CAS  Google Scholar 

  • Langer T, Corvey C, Kroll K, Boscheinen O, Wendrich T, Dittrich W (2017) Expression and purification of the extracellular domains of human glycoprotein VI (GPVI) and the receptor for advanced glycation end products (RAGE) from Rattus norvegicus in Leishmania tarentolae. Prep Biochem Biotechnol 47(10):1008–1015

    CAS  Google Scholar 

  • Lee KA, Lee SS, Kim SY, Choi AR, Lee JH (2015) Jung KH (2015) Mistic-fused expression of algal rhodopsins in Escherichia coli and its photochemical properties. Biochim Biophys Acta 1850:1694–1703

    CAS  Google Scholar 

  • Levanov L, Kuivanen S, Matveev A, Swaminathan S, Jääskeläinen-Hakala A, Vapalahti O (2014) Diagnostic potential and antigenic properties of recombinant tick-borne encephalitis virus subviral particles expressed in mammalian cells from Semliki Forest virus replicons. J Clin Microbiol 52(3):814–822

    CAS  Google Scholar 

  • Liu Y, Zhang L, Zhang Y, Liu D, Du E, Yang Z (2015) Functional analysis of RNAi suppressor P19 on improving baculovirus yield and transgene expression in Sf9 cells. Biotechnol Lett 37(11):2159–2166

    CAS  Google Scholar 

  • Liu WC, Gong T, Wang QH, Liang X, Chen JJ, Zhu P (2016) Scaling-up fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep 6:18439

    CAS  Google Scholar 

  • Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33(6):1177–1193

    CAS  Google Scholar 

  • Madhavan V, Jeffery CJ (2010) Recombinant expression screening of P. aeruginosa bacterial inner membrane proteins. BMC Biotechnol 10(1):83

    CAS  Google Scholar 

  • Mansouri M, Berger P (2018) Baculovirus for gene delivery to mammalian cells: Past, present and future. Plasmid 98:1–7

    CAS  Google Scholar 

  • Marreddy RK, Pinto JP, Wolters JC, Geertsma ER, Fusetti F, Permentier HP, Kuipers OP, Kok J, Poolman B (2011) The response of Lactococcus lactis to membrane protein production. PLoS ONE 6(8):e24060

    CAS  Google Scholar 

  • McClean S (2012) Eight stranded β-barrel and related outer membrane proteins: role in bacterial pathogenesis. Protein Pept Lett 19(10):1013–1025

    CAS  Google Scholar 

  • McConnell MJ, Pachón J (2011) Expression, purification, and refolding of biologically active Acinetobacter baumannii OmpA from Escherichia coli inclusion bodies. Protein Expr Purif 77(1):98–103

    CAS  Google Scholar 

  • Meola A, Deville C, Jeffers SA, Guardado-Calvo P, Vasiliauskaite I, Sizun C, Girard-Blanc C, Malosse C, Van Heijenoort C, Chamot-Rooke J, Krey T (2014) Robust and low cost uniform 15N-labeling of proteins expressed in Drosophila S2 cells and Spodoptera frugiperda Sf9 cells for NMR applications. J Struct Biol 188(1):71–78

    CAS  Google Scholar 

  • Michel H (2018) General and practical aspects of membrane protein crystallization. In: Michel H (ed) Crystallization of membrane proteins. CRC Press, Boca Raton, pp 73–88

    Google Scholar 

  • Midgett CR, Madden DR (2007) Breaking the bottleneck: eukaryotic membrane protein expression for high-resolution structural studies. J Struct Biol 160(3):265–274

    CAS  Google Scholar 

  • Monné M, Chan KW, Slotboom DJ, Kunji ER (2005) Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci 14(12):3048–3056

    Google Scholar 

  • Nandi B, Nandy RK, Sarkar A, Ghose AC (2005) Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151(9):2975–2986

    CAS  Google Scholar 

  • Nekrasova OV, Wulfson AN, Tikhonov RV, Yakimov SA, Simonova TN, Tagvey AI, Dolgikh DA, Ostrovsky MA, Kirpichnikov MP (2010) A new hybrid protein for production of recombinant bacteriorhodopsin in Escherichia coli. J Biotechnol 147(3–4):145–150

    CAS  Google Scholar 

  • Orth JH, Schorch B, Boundy S, Ffrench-Constant R, Kubick S, Aktories K (2011) Cell-free synthesis and characterization of a novel cytotoxic pierisin-like protein from the cabbage butterfly Pieris rapae. Toxicon 57(2):199–207

    CAS  Google Scholar 

  • Overduin M, Esmaili M (2018) Memtein: the fundamental unit of membrane: protein structure and function. Chem Phys Lipids 218:73–84

    Google Scholar 

  • Palanivelu DV, Kozono DE, Engel A, Suda K, Lustig A, Agre P, Schirmer T (2006) Co-axial association of recombinant eye lens aquaporin-0 observed in loosely packed 3D crystals. J Mol Biol 355(4):605–611

    CAS  Google Scholar 

  • Park J, Mabuchi M, Sharma A (2015) Visualization of unstained protein bands on PVDF. In: Park J, et al. (eds) Detection of blotted proteins. Humana Press, New York, pp 191–194

    Google Scholar 

  • Peña DA, Gasser B, Zanghellini J, Steiger MG, Mattanovich D (2018) Metabolic engineering of Pichia pastoris. Metab Eng 50:2–15

    Google Scholar 

  • Pogozheva ID (1860) Lomize AL (2018) Evolution and adaptation of single-pass transmembrane proteins. Biochim Biophys Acta 2:364–377

    Google Scholar 

  • Pollock NL, Lee SC, Patel JH, Gulamhussein AA (1860) Rothnie AJ (2018) Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer. Biochim Biophys Acta 4:809–817

    Google Scholar 

  • Pontrelli S, Chiu TY, Lan EI, Chen FY, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46

    CAS  Google Scholar 

  • Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, Fattahian Y, Ghasemi Y (2019a) Pierce into the native structure of Ata, a trimeric autotransporter of Acinetobacter baumannii ATCC 17978. Int J Pept Res Ther. https://doi.org/10.1007/s10989-019-09920-5

    Article  Google Scholar 

  • Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, Fattahian Y, Ghasemi Y (2019b) Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work. Infect Genet Evol 71:116–127

    CAS  Google Scholar 

  • Ramezani A, Zakeri A, Mard-Soltani M, Mohammadian A, Hashemi ZS, Mohammadpour H, Jahangiri A, Khalili S, Rasaee MJ (2019) Structure based screening for inhibitory therapeutics of CTLA-4 unveiled new insights about biology of ACTH. Int J Pept Res Ther. https://doi.org/10.1007/s10989-019-09891-7

    Article  Google Scholar 

  • Reading E, Liko I, Allison TM, Benesch JL, Laganowsky A, Robinson CV (2015) The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase. Angew Chem Int Ed 54(15):4577–4581

    CAS  Google Scholar 

  • Roosild T, Greenwald J, Choe S, inventors; Salk Institute for Biological Studies, assignee (2013) Compositions and methods for producing recombinant proteins. United States patent US 8372801

  • Roy A (2015) Membrane preparation and solubilization. Methods Enzymol 557:45–56

    CAS  Google Scholar 

  • Sachse R, Wüstenhagen D, Šamalíková M, Gerrits M, Bier FF, Kubick S (2013) Synthesis of membrane proteins in eukaryotic cell-free systems. Eng Life Sci 13(1):39–48

    CAS  Google Scholar 

  • Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S (2014) Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Lett 588(17):2774–2781

    CAS  Google Scholar 

  • Sadaf A, Cho KH, Byrne B, Chae PS (2015) Amphipathic agents for membrane protein study. Methods Enzymol 557:57–94

    CAS  Google Scholar 

  • Santos NG, Rocca MP, Pereira CA, Ventini DC, Puglia AL, Jorge SA, Lemos MA, Astray RM (2016) Impact of recombinant Drosophila S2 cell population enrichment on expression of rabies virus glycoprotein. Cytotechnology 68(6):2605–2611

    CAS  Google Scholar 

  • Schlegel S, Hjelm A, Baumgarten T, Vikström D (2014) de Gier JW (2014) Bacterial-based membrane protein production. Biochim Biophys Acta 1843(8):1739–1749

    CAS  Google Scholar 

  • Seyfi R, Babaeipour V, Mofid MR, Kahaki FA (2019) Expression and production of recombinant scorpine as a potassium channel blocker protein in Escherichia coli. Biotechnol Appl Biochem 66(1):119–129

    CAS  Google Scholar 

  • Smith MT, Bennett AM, Hunt JM, Bundy BC (2015) Creating a completely “cell-free” system for protein synthesis. Biotechnol Prog 31(6):1716–1719

    CAS  Google Scholar 

  • Stetsenko A, Guskov A (2017) An overview of the top ten detergents used for membrane protein crystallization. Crystals 7(7):197

    Google Scholar 

  • Suárez-Patiño SF, Mancini RA, Pereira CA, Suazo CA, Mendonça RZ, Jorge SA (2014) Transient expression of rabies virus glycoprotein (RVGP) in Drosophila melanogaster Schneider 2 (S2) cells. J Biotechnol 192:255–262

    Google Scholar 

  • Taguchi S, Ooi T, Mizuno K, Matsusaki H (2015) Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol 99(22):9349–9360

    CAS  Google Scholar 

  • Talmont F, Moulédous L, Mollereau C, Zajac JM (2014) Solubilization and reconstitution of the mu-opioid receptor expressed in human neuronal SH-SY5Y and CHO cells. Peptides 55:79–84

    CAS  Google Scholar 

  • Tamaru Y, Ban EA, Manya H, Endo T, Akiyama SI (2014) Molecular characterization of protein O-linked mannose β-1, 2-N-acetylglucosaminyltransferase 1 in Zebrafish. J Glycomics Lipidomics 4(111):10–4172

    Google Scholar 

  • Tastan O, Dutta A, Booth P (1837) Klein-Seetharaman J (2014) Retinal proteins as model systems for membrane protein folding. Biochim Biophys Acta 5:656–663

    Google Scholar 

  • Tate CG (2010) Practical considerations of membrane protein instability during purification and crystallisation. Methods Mol Biol 601:187–203

    CAS  Google Scholar 

  • Tenorio AT, Boom RM, van der Goot AJ (2017) Understanding leaf membrane protein extraction to develop a food-grade process. Food Chem 217:234–243

    Google Scholar 

  • Thomas JA, Tate CG (2014) Quality control in eukaryotic membrane protein overproduction. J Mol Biol 426(24):4139–4154

    CAS  Google Scholar 

  • Tomas-Gamisans M, Ferrer P, Albiol J (2016) Integration and validation of the genome-scale metabolic models of Pichia pastoris: a comprehensive update of protein glycosylation pathways, lipid and energy metabolism. PLoS ONE 11(1):e0148031

    Google Scholar 

  • Tripodi F, Nicastro R, Reghellin V, Coccetti P (2015) Post-translational modifications on yeast carbon metabolism: regulatory mechanisms beyond transcriptional control. Biochim Biophys Acta 1850(4):620–627

    Google Scholar 

  • Tsirigos KD, Govindarajan S, Bassot C, Västermark Å, Lamb J, Shu N, Elofsson A (2018) Topology of membrane proteins—predictions, limitations and variations. Curr Opin Struct Biol 50:9–17

    CAS  Google Scholar 

  • Tulumello DV (2012) Deber CM (2012) Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms. Biochim Biophys Acta 5:1351–1358

    Google Scholar 

  • Üstün-Aytekin Ö, Gürhan İD, Ohura K, Imai T, Öngen G (2014) Monitoring of the effects of transfection with baculovirus on Sf9 cell line and expression of human dipeptidyl peptidase IV. Cytotechnology 66(1):159–168

    Google Scholar 

  • Vera-Estrella R, Barkla BJ, Pantoja O (2014) Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. J Proteom 111:113–127

    CAS  Google Scholar 

  • Vettath SK, Shivashankar G, Menon KN, Vijayachandran LS (2018) Recombinant expression of extracellular domain of mutant epidermal growth factor receptor in prokaryotic and baculovirus expression systems. Int J Biol Macromol 110:582–587

    CAS  Google Scholar 

  • Walther A, Hesselbart A, Wendland J (2014) Genome sequence of Saccharomyces carlsbergensis, the world’s first pure culture lager yeast. G3 4(5):783–93

  • Wang X, Wang Q, Wang J, Bai P, Shi L, Shen W, Zhou M, Zhou X, Zhang Y, Cai M (2016) Mit1 transcription factor mediates methanol signaling and regulates the alcohol oxidase 1 (AOX1) promoter in Pichia pastoris. J Biol Chem 291(12):6245–6261

    CAS  Google Scholar 

  • Xun Y, Tremouilhac P, Carraher C, Gelhaus C, Ozawa K, Otting G, Dixon NE, Leippe M, Grötzinger J, Dingley AJ, Kralicek AV (2009) Cell-free synthesis and combinatorial selective 15N-labeling of the cytotoxic protein amoebapore A from Entamoeba histolytica. Protein Expr Purif 68(1):22–27

    CAS  Google Scholar 

  • Yang Z, Wang C, Zhou Q, An J, Hildebrandt E, Aleksandrov LA, Kappes JC, DeLucas LJ, Riordan JR, Urbatsch IL, Hunt JF (2014) Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains. Protein Sci 23(6):769–789

    CAS  Google Scholar 

  • Zemella A, Thoring L, Hoffmeister C, Kubick S (2015) Cell-free protein synthesis: Pros and cons of prokaryotic and eukaryotic systems. ChemBioChem 16(17):2420–2431

    CAS  Google Scholar 

  • Zheng X, Dong S, Zheng J, Li D, Li F, Luo Z (2014) Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnol Adv 32(3):564–574

    CAS  Google Scholar 

  • Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170

    CAS  Google Scholar 

  • Zhu D, Fu Y, Liu F, Xu H, Saris PE, Qiao M (2017) Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000. Microb Cell Fact 16(1):1

    Google Scholar 

  • Zulauf M (2018) Detergent phenomena in membrane protein crystallization. In: Zulauf M (ed) Crystallization of membrane proteins. CRC Press, Boca Raton, pp 53–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahra Payandeh or Saeed Khalili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarghooi Kahaki, F., Monzavi, S., Bamehr, H. et al. Expression and Purification of Membrane Proteins in Different Hosts. Int J Pept Res Ther 26, 2077–2087 (2020). https://doi.org/10.1007/s10989-019-10009-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-10009-2

Keywords

Navigation