Survivin as a Target for Anti-cancer Phytochemicals According to the Molecular Docking Analysis

Abstract

Survivin is a unique member of the inhibitor of apoptosis protein family. Research has approved Survivin’s ability to interact with Smac/DIABLO, suggesting that Survivin may suppress activation of caspases indirectly. On the other hand, research has demonstrated that many drugs for cancer therapy are unsuccessful and disappointing in advanced stages. Therefore, it is necessary to find new drugs with the highest anti-cancer properties and lowest side effects. We investigated the interaction of some phytochemicals with BIR domain of Survivin. In this study, the 3D structures of some phytochemicals, including Berberine, Carvacrol, Crocetin, Crocin, Curcumin, Picrocrocin, Piperine, and Thymol, were harnessed from Human Metabolome Database, which has reported some evidence about these phytochemicals’ anti-cancer effect via the apoptosis induction with Survivin. Then, these structures were prepared for molecular docking analysis by Autodock Vina software. Ultimately, the binding energies between docked Survivin and the above mentioned phytochemicals were calculated and their interactions were predicted. Our results indicated that all phytochemicals can interact with Survivin molecule in active site of Smac/DIABLO and the best minimum binding energies belong to Piperine and Picrocrocin. It is concluded that, out of the studied compounds, Piperine and Picrocrocin could act as potential inhibitors of Survivin.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abrams SL et al (2019) Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Adv Biol Regul 71:172–182. https://doi.org/10.1016/j.jbior.2018.10.003

    CAS  Article  PubMed  Google Scholar 

  2. Amerizadeh F et al (2018) Crocin synergistically enhances the antiproliferative activity of 5-flurouracil through Wnt/PI3K pathway in a mouse model of colitis-associated colorectal cancer. J Cell Biochem 119:10250–10261

    CAS  Article  Google Scholar 

  3. Arzi L, Farahi A, Jafarzadeh N, Riazi G, Sadeghizadeh M, Hoshyar R (2018) Inhibitory effect of crocin on metastasis of triple-negative breast cancer by interfering with Wnt/β-catenin pathway in murine model. DNA Cell Biol 37:1068–1075

    CAS  Article  Google Scholar 

  4. Bakshi HA, Hakkim FL, Sam S (2016) Molecular mechanism of crocin induced caspase mediated MCF-7 cell death: in vivo toxicity profiling and ex vivo macrophage activation. Asian Pac J Cancer Prev 17:1499–1506

    Article  Google Scholar 

  5. Bathaie SZ, Mousavi SZ (2010) New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 50:761–786. https://doi.org/10.1080/10408390902773003

    CAS  Article  PubMed  Google Scholar 

  6. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  7. Chen S et al (2015) Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Can Res 4:775–783. https://doi.org/10.3978/j.issn.2218-6751.2015.11.03

    CAS  Article  Google Scholar 

  8. Chidambara Murthy KN, Jayaprakasha GK, Patil BS (2012) The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur J Pharmacol 688:14–21. https://doi.org/10.1016/j.ejphar.2012.05.004

    CAS  Article  PubMed  Google Scholar 

  9. Dai W, Sun C, Huang S, Zhou Q (2016) Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma. OncoTargets Ther 9:2297–2304. https://doi.org/10.2147/OTT.S98875

    CAS  Article  Google Scholar 

  10. Dai W, Mu L, Cui Y, Li Y, Chen P, Xie H, Wang X (2019) Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2)/AU-binding factor 1 (AUF1)/B-Cell CLL/lymphoma 2 (Bcl-2) axis. Med Sci Monit 25:730–738. https://doi.org/10.12659/msm.912082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Du J, Kelly AE, Funabiki H, Patel DJ (2012) STRUCTURAL basis for recognition of H3T3ph and Smac/DIABLO N-terminal peptides by human. Surviv Struct 20:185–195. https://doi.org/10.1016/j.str.2011.12.001

    CAS  Article  Google Scholar 

  12. Fan K, Li X, Cao Y, Qi H, Li L, Zhang Q, Sun H (2015) Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs 26:813–823. https://doi.org/10.1097/cad.0000000000000263

    CAS  Article  PubMed  Google Scholar 

  13. Faridi N, Heidarzadeh H, Mohagheghi MA, Bathaie SZ (2019) BT-474 breast cancer cell apoptosis induced by crocin, a saffron carotenoid. Basic Clin Cancer Res 11:5–15

    Google Scholar 

  14. Festuccia C, Colapietro A, Mancini A, D’alessandro A (2018) Crocetin and crocin from saffron in cancer chemotherapy and chemoprevention. Anti Cancer Agents Med Chem 19:38–47

    Google Scholar 

  15. Gan R-Y (2012) Bioactivities of berberine: an Update, vol 1

  16. Global Burden of Disease Cancer C (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study JAMA. Oncology 3:524–548. https://doi.org/10.1001/jamaoncol.2016.5688

    Article  Google Scholar 

  17. Groner B, Weiss A (2014) Targeting survivin in cancer: novel drug development approaches. Biodrugs 28:27–39. https://doi.org/10.1007/s40259-013-0058-x

    CAS  Article  PubMed  Google Scholar 

  18. Gutheil WG, Reed G, Ray A, Dhar A (2012) Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 13:173–179

    CAS  Article  Google Scholar 

  19. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845. https://doi.org/10.1155/2014/150845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Hassanalilou T, Ghavamzadeh S, Khalili L (2019) Curcumin and gastric cancer: a review on mechanisms of action. J Gastrointest Cancer 15:185–192. https://doi.org/10.1007/s12029-018-00186-6

    CAS  Article  Google Scholar 

  21. Heidarzadeh H, Bathaie SZ, Abroun S, Mohagheghi MA (2018) Evaluating the cytotoxic effect of crocin on MDA-MB-468 cell line based on apoptosis induction, ER stress, and autophagy markers. Pathol Res 20:37–51

    Google Scholar 

  22. Jabbarzadeh Kaboli P, Rahmat A, Ismail P, Ling K-H (2014) Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur J Pharmacol 740:584–595. https://doi.org/10.1016/j.ejphar.2014.06.025

    CAS  Article  PubMed  Google Scholar 

  23. Jafarisani M, Bathaie SZ, Mousavi MF (2018) Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. J Biomol Struct Dyn 36:1681–1690

    CAS  Article  Google Scholar 

  24. Jafri A et al (2019) Induction of apoptosis by piperine in human cervical adenocarcinoma via ROS mediated mitochondrial pathway and caspase-3 activation. EXCLI J 18:154–164. https://doi.org/10.17179/excli2018-1928

  25. Jaiswal PK, Goel A, Mittal RD (2015) Survivin: a molecular biomarker in cancer. Indian J Med Res 141:389–397. https://doi.org/10.4103/0971-5916.159250

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kang SH et al (2016a) Anticancer effect of thymol on ags human gastric carcinoma cells. J Microbiol Biotechnol 26:28–37. https://doi.org/10.4014/jmb.1506.06073

    CAS  Article  PubMed  Google Scholar 

  27. Kang Y et al (2016b) Curcumin sensitizes human gastric cancer cells to 5-fluorouracil through inhibition of the NFκB survival-signaling pathway. OncoTargets Ther 9:7373–7384. https://doi.org/10.2147/ott.s118272

    CAS  Article  Google Scholar 

  28. Kapellos G et al (2013) Overexpression of survivin levels in circulation and tissue samples of lung cancer patients. Anticancer Res 33:3475–3480

    CAS  PubMed  Google Scholar 

  29. Khalili S, Zakeri A, Hashemi Zahra S, Masoumikarimi M, Rezaei Manesh Mohammad R, Shariatifar N, Jafari Sani M (2017) Structural analyses of the interactions between the thyme active ingredients and human serum albumin. Turk J Biochem 42:459–467. https://doi.org/10.1515/tjb-2017-0008

    CAS  Article  Google Scholar 

  30. Khan Z, Khan AA, Yadav H, Prasad GBKS, Bisen PS (2017) Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett 22:8. https://doi.org/10.1186/s11658-017-0038-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Khorasanchi Z et al (2018) Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine 43:21–27. https://doi.org/10.1016/j.phymed.2018.03.041

    CAS  Article  PubMed  Google Scholar 

  32. Kim JY et al (2006) Nuclear interaction of Smac/DIABLO with Survivin at G2/M arrest prompts docetaxel-induced apoptosis in DU145 prostate cancer cells. Biochem Biophys Res Commun 350:949–954. https://doi.org/10.1016/j.bbrc.2006.09.143

    CAS  Article  PubMed  Google Scholar 

  33. Kunihiro AG, Brickey JA, Frye JB, Luis PB, Schneider C, Funk JL (2019) Curcumin, but not curcumin-glucuronide, inhibits Smad signaling in TGFβ-dependent bone metastatic breast cancer cells and is enriched in bone compared to other tissues. J Nutr Biochem 63:150–156

    CAS  Article  Google Scholar 

  34. Lahazi V, Taheri G, Jafarisani M (2015) Antioxidant enzymes activity of Ferula flabelliloba and Ferula diversivitata extracts Turkish. J Biochem 40:310–315. https://doi.org/10.1515/tjb-2015-0016

    CAS  Article  Google Scholar 

  35. Li S et al (2015) Anticancer effects of crocetin in human esophageal squamous cell carcinoma KYSE-150 cells. Oncol Lett 9:1254–1260. https://doi.org/10.3892/ol.2015.2869

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li Y et al (2012) Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett 215:1–7. https://doi.org/10.1016/j.toxlet.2012.09.019

    CAS  Article  PubMed  Google Scholar 

  37. Lim W, Ham J, Bazer FW, Song G (2019) Carvacrol induces mitochondria-mediated apoptosis via disruption of calcium homeostasis in human choriocarcinoma cells. J Cell Physiol 234:1803–1815

    CAS  Article  Google Scholar 

  38. Lu B, Hu M, liu K, Peng J (2010) Cytotoxicity of berberine on human cervical carcinoma HeLa cells through mitochondria, death receptor and MAPK pathways, and in silico drug-target prediction. Toxicol In Vitro 24:1482–1490. https://doi.org/10.1016/j.tiv.2010.07.017

    CAS  Article  PubMed  Google Scholar 

  39. Lu P, Lin H, Gu Y, Li L, Guo H, Wang F, Qiu X (2015) Antitumor effects of crocin on human breast cancer cells. Int J Clin Exp Med 8:20316–20322

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahmudabadi AZ, Karimi MM, Bahabadi M, Hoseinabadi ZB, JafariSani M, Ahmadi R (2016) Inhibition of AGS cancer cell proliferation following siRNA-mediated downregulation of VEGFR2. Cell J 18:381–388

    Google Scholar 

  41. Manayi A, Nabavi SM, Setzer WN, Jafari S (2017) Piperine as a potential anti-cancer agent: a review on preclinical studies. Curr Med Chem 1:1. https://doi.org/10.2174/0929867324666170523120656

    CAS  Article  Google Scholar 

  42. McCubrey JA et al. (2017) Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 9:1477–1536. https://doi.org/10.18632/aging.101250

  43. McNeish IA et al (2005) Survivin interacts with Smac/DIABLO in ovarian carcinoma cells but is redundant in Smac-mediated apoptosis. Exp Cell Res 302:69–82. https://doi.org/10.1016/j.yexcr.2004.08.029

    CAS  Article  PubMed  Google Scholar 

  44. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    CAS  Article  Google Scholar 

  45. Milajerdi A, Haghighatdoost F, Azadbakht L (2015) Saffron (Crocus satious L) and its crocin and crocetin toxicity against normal and tumor cells: a systematic review. Review. https://doi.org/10.1016/j.jnim.2015.12.332

    Article  Google Scholar 

  46. Miller Kimberly D et al (2016) Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 66:271–289. https://doi.org/10.3322/caac.21349

    CAS  Article  PubMed  Google Scholar 

  47. Mobahat M, Narendran A, Riabowol K (2014) Survivin as a preferential target for cancer therapy. Int J Mol Sci 15:2494–2516. https://doi.org/10.3390/ijms15022494

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Moosavi MA, Rahmati M, Ashtari N, Alizadeh J, Hashemi M, Bathaei SZ, Ghavami S (2017) Apoptosis, autophagy, and unfolded protein response and cerebellar development. Development of the cerebellum from molecular aspects to diseases. Springer, New York, pp 153–178

    Chapter  Google Scholar 

  49. Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A (2018) Anti-tumor effects of crocetin and related molecular targets. J Cell Physiol 233:2170–2182. https://doi.org/10.1002/jcp.25953

    CAS  Article  PubMed  Google Scholar 

  50. Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK (2017) Pharmacological Properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol 8:380. https://doi.org/10.3389/fphar.2017.00380

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Park W, Amin ARMR, Chen ZG, Shin DM (2013) New perspectives of curcumin in cancer prevention. Cancer Prev Res 6:387–400. https://doi.org/10.1158/1940-6207.capr-12-0410

    CAS  Article  Google Scholar 

  52. Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P (2019) Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Critical Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2018.1552244

    Article  Google Scholar 

  53. Pavlyukov MS, Antipova NV, Balashova MV, Vinogradova TV, Kopantzev EP, Shakhparonov MI (2011) Survivin monomer plays an essential role in apoptosis regulation. J Biol Chem 286:23296–23307. https://doi.org/10.1074/jbc.M111.237586

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Potočnjak I, Gobin I, Domitrović R (2018) Carvacrol induces cytotoxicity in human cervical cancer cells but causes cisplatin resistance: involvement of MEK–ERK activation. Phytother Res 32:1090–1097

    Article  Google Scholar 

  55. Rather RA, Bhagat M (2018) Cancer chemoprevention and piperine: molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 6:10. https://doi.org/10.3389/fcell.2018.00010

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11:495–510. https://doi.org/10.1208/s12248-009-9128-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Rothwell DG, Barzilay G, German M, Morera S, Freemont P, Hickson LD (1997) The structure and functions of the HAPl/Ref-1 protein. Oncol Res 9:275–280

    CAS  PubMed  Google Scholar 

  58. Sah NK, Khan Z, Khan GJ, Bisen PS (2006) Structural, functional and therapeutic biology of survivin. Cancer Lett 244:164–171. https://doi.org/10.1016/j.canlet.2006.03.007

    CAS  Article  PubMed  Google Scholar 

  59. Sani MJ, Yazdi F, Karimi MM, Alizadeh J, Rahmati M, Mahmudabadi AZ (2016) The siRNA-mediated down-regulation of vascular endothelial growth factor receptor1. Iran Red Crescent Med J 18:381–388

    Google Scholar 

  60. Shariatifar N, Shoeibi S, Sani MJ, Jamshidi AH, Zarei A, Mehdizade A, Dadgarnejad M (2014) Study on diuretic activity of saffron (stigma of Crocus sativus L.) Aqueous extract in rat. J Adv Pharm Technol Res 5:17

    Article  Google Scholar 

  61. Song Z, Yao X, Wu M (2003) Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 278:23130–23140. https://doi.org/10.1074/jbc.M300957200

    CAS  Article  PubMed  Google Scholar 

  62. Sriwiriyajan S, Tedasen A, Lailerd N, Boonyaphiphat P, Nitiruangjarat A, Deng Y, Graidist P (2016) Anticancer and Cancer prevention effects of piperine-free Piper nigrum extract on N-nitrosomethylurea-induced mammary tumorigenesis in rats. Cancer Prev Res 9:74. https://doi.org/10.1158/1940-6207.capr-15-0127

    Article  Google Scholar 

  63. Suk Choi M et al (2009) Berberine inhibits p53-dependent cell growth through induction of apoptosis of prostate cancer cells. Int J Oncol 34:1221–1230. https://doi.org/10.3892/ijo_00000250

    CAS  Article  Google Scholar 

  64. Sun C, Nettesheim D, Liu Z, Olejniczak ET (2005) Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry 44:11–17. https://doi.org/10.1021/bi0485171

    CAS  Article  PubMed  Google Scholar 

  65. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Wishart DS et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526. https://doi.org/10.1093/nar/gkl923

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Xu J et al (2019) Anticancer effect of berberine based on experimental animal models of various cancers: a systematic review and meta-analysis. BMC Cancer 19:589–589. https://doi.org/10.1186/s12885-019-5791-1

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yaffe PB, Power Coombs M, Doucette C, Walsh M, Hoskin D (2014) Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinogen 54:1070–1085. https://doi.org/10.1002/mc.22176

    CAS  Article  Google Scholar 

  69. Yu M et al (2013) Berberine enhances chemosensitivity to irinotecan in colon cancer via inhibition of NF-κB. Mol Med Rep 9:249–254. https://doi.org/10.3892/mmr.2013.1762

    CAS  Article  PubMed  Google Scholar 

  70. Yu L, Li J, Xiao M (2018) Picrocrocin exhibits growth inhibitory effects against SKMEL- 2 human malignant melanoma cells by targeting JAK/STAT5 signaling pathway, cell cycle arrest and mitochondrial mediated apoptosis. J BUON 23:1163–1168

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant No 9775 from Shahroud University of Medical Sciences.

Funding

This study was funded by Shahroud University of Medical Sciences (Grant No 9775).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Moslem Jafarisani or Mersedeh Tashakori.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. However, we have ethical cod approve IR.SHMU.REC.1397.112 by ethical committee of SHMU.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Foroughi, K., Jahanbani, S., Nazarnezhad, S. et al. Survivin as a Target for Anti-cancer Phytochemicals According to the Molecular Docking Analysis. Int J Pept Res Ther 26, 1115–1126 (2020). https://doi.org/10.1007/s10989-019-09914-3

Download citation

Keywords

  • Survivin
  • Smac/DIABLO
  • Inhibitors
  • Autodock Vina
  • Phytochemicals
  • Berberine
  • Piperine