Antibacterial Activity of Cysteine-Derived Cationic Dipeptides

Abstract

Antibiotic resistance is a growing problem, especially in the treating of life-threatening diseases like sepsis. One way to address such an issue is with the use of antimicrobial peptides, which can kill many types of bacteria by disrupting cellular targets (such as membranes) through electrostatic interaction. In this report, cysteine-derived cationic dipeptides lysine–cysteine (KC), arginine–cysteine (RC) and histidine–cysteine (HC) were used to evaluate antibacterial activity against Gram-negative and positive bacteria. The dipeptides exhibited bacterial membrane rupture capabilities under SEM observation after treatment with IC50 conditions, as well as low cytotoxicity and hemolytic activity toward normal cell lines and human red blood cells (RBCs) at IC50. Furthermore, the dipeptides significantly ameliorated Enterohaemorrhagic E. coli (EHEC)-induced lethality in Caenorhabditis elegans in a dose-dependent manner. These cysteine-derived cationic dipeptides may provide a novel alternative therapy in combating bacterial infection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aderem A (2003) Phagocytosis and the inflammatory response. J Infect Dis 187(Suppl 2):S340–S345

    CAS  Article  Google Scholar 

  2. Alonso JM (2008) Immunity and pathophysiology of respiratory tract infections. Med Mal Infect 38:433–437

    Article  Google Scholar 

  3. Banerji B, Pramanik SK, Pal U, Maiti NC (2013) Potent anticancer activity of cystine-based dipeptides and their interaction with serum albumins. Chem Cent J 7:91

    Article  Google Scholar 

  4. Bartzatt R, Grillo SLG, Grillo JD (2007) Antibacterial activity of dipeptide constructs of acetylsalicylic acid and nicotinic acid. Drug Deliv 14:105–109

    CAS  Article  Google Scholar 

  5. Buckley CD, Pilling D, Henriquez NV, Parsonage G, Threlfall K, Scheel-Toellner D, Simmons DL, Akbar AN, Lord JM, Salmon M (1999) RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397:534–539

    CAS  Article  Google Scholar 

  6. Caldeira E, Piskin E, Granadeiro L, Silva F, Gouveia IC (2013) Biofunctionalization of cellulosic fibres with l-cysteine: assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiella pneumoniae. J Biotechnol 168:426–435

    CAS  Article  Google Scholar 

  7. Chou TC, Chiu HC, Kuo CJ, Wu CM, Syu WJ, Chiu WT, Chen CS (2013) Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol 15:82–97

    CAS  Article  Google Scholar 

  8. Dalzoppo D, Di Paolo V, Calderan L, Pasut G, Rosato A, Caccuri AM, Quintieri L (2017) Thiol-activated anticancer agents: the state of the art. Anti-Cancer Agent Med Chem 17:4–20

    CAS  Google Scholar 

  9. Dobrzynska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z (2005) Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem 276:113–119

    CAS  Article  Google Scholar 

  10. Epand RM, Walker C, Epand RF, Magarvey NA (2016) Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta 1858:980–987

    CAS  Article  Google Scholar 

  11. Fura JM, Pidgeon SE, Birabaharan M, Pires MM (2016) Dipeptide-based metabolic labeling of bacterial cells for endogenous antibody recruitment. ACS Infect Dis 2:302–309

    CAS  Article  Google Scholar 

  12. Geissler S, Zwarg M, Knutter I, Markwardt F, Brandsch M (2010) The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters. FEBS J 277:790–795

    CAS  Article  Google Scholar 

  13. Gorbitz CH (2006) The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s beta-amyloid polypeptide. Chem Commun (Camb) 22:2332–2334

    Article  Google Scholar 

  14. Gouveia IC, Sa D, Henriques M (2012) Functionalization of wool with l-cysteine: process characterization and assessment of antimicrobial activity and cytotoxicity. J Appl Polym Sci 124:1352–1358

    CAS  Article  Google Scholar 

  15. Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315

    CAS  Article  Google Scholar 

  16. Habimana O, Semiao AJC, Casey E (2014) The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltrationfreverse osmosis membranes. J Membr Sci 454:82–96

    CAS  Article  Google Scholar 

  17. Huber A, Hajdu D, Bratschun-Khan D, Gaspari Z, Varbanov M, Philippot S, Fizil A, Czajlik A, Kele Z, Sonderegger C et al (2018) New antimicrobial potential and structural properties of PAFB: a cationic, cysteine-rich protein from Penicillium chrysogenum Q176. Sci Rep 8:1751

    Article  Google Scholar 

  18. Koshiba T, Hashii T, Kawabata SI (2007) A structural perspective on the interaction between lipopolysaccharide and Factor C, a receptor involved in recognition of Gram-negative bacteria. J Biol Chem 282:3962–3967

    CAS  Article  Google Scholar 

  19. Lam SJ, O’Brien-Simpson NM, Pantarat N, Sulistio A, Wong EHH, Chen YY, Lenzo JC, Holden JA, Blencowe A, Reynolds EC et al (2016) Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol 1:16162

    CAS  Article  Google Scholar 

  20. Lambert JD, Sang S, Hong J, Yang CS (2010) Anticancer and anti-inflammatory effects of cysteine metabolites of the green tea polyphenol, (-)-epigallocatechin-3-gallate. J Agric Food Chem 58:10016–10019

    CAS  Article  Google Scholar 

  21. Lee BS, Huang JS, Jayathilaka GD, Lateef SS, Gupta S (2010) Production of antipeptide antibodies. Methods Mol Biol 657:93–108

    CAS  Article  Google Scholar 

  22. Liang SY, Zhou Q, Wang M, Zhu YH, Wu QZ, Yang XL (2015) Water-soluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomed 10:2325

    CAS  Article  Google Scholar 

  23. Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15:933–946

    CAS  Article  Google Scholar 

  24. Malkawi R, Iyer A, Parmar A, Lloyd DG, Goh ETL, Taylor EJ, Sarmad S, Madder A, Lakshminarayanan R, Singh I (2018) Cysteines and disulfide-bridged macrocyclic mimics of teixobactin analogues and their antibacterial activity evaluation against methicillin-resistant Staphylococcus aureus (MRSA). Pharmaceutics 10:183

    CAS  Article  Google Scholar 

  25. Maroti G, Downie JA, Kondorosi E (2015) Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr Opin Plant Biol 26:57–63

    CAS  Article  Google Scholar 

  26. McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA et al (2007) The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev Biol 302:627–645

    CAS  Article  Google Scholar 

  27. Mikulass KR, Nagy K, Bogos B, Szegletes Z, Kovacs E, Farkas A, Varo G, Kondorosi E, Kereszt A (2016) Antimicrobial nodule-specific cysteine-rich peptides disturb the integrity of bacterial outer and inner membranes and cause loss of membrane potential. Ann Clin Microbiol Antimicrob 15:43

    Article  Google Scholar 

  28. Odeberg J, Wirsen A, Norberg A, Frie J, Printz G, Lagercrantz H, Gudmundsson GH, Agerberth B, Jonsson B (2018) A novel cysteine-linked antibacterial surface coating significantly inhibits bacterial colonization of nasal silicone prongs in a phase one pre-clinical trial. Mater Sci Eng C 93:782–789

    CAS  Article  Google Scholar 

  29. Perazzo J, Castanho MA, Sa Santos S (2016) Pharmacological potential of the endogenous dipeptide kyotorphin and selected derivatives. Front Pharmacol 7:530

    PubMed  Google Scholar 

  30. Saini SK, Ostermeir K, Ramnarayan VR, Schuster H, Zacharias M, Springer S (2013) Dipeptides promote folding and peptide binding of MHC class I molecules. Proc Natl Acad Sci USA 110:15383–15388

    CAS  Article  Google Scholar 

  31. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a00414

    Article  Google Scholar 

  32. Sivakamavalli J, Nirosha R, Vaseeharan B (2015) Purification and characterization of a cysteine-rich 14-kDa antibacterial peptide from the granular hemocytes of mangrove crab Episesarma tetragonum and its antibiofilm activity. Appl Biochem Biotechnol 176:1084–1101

    CAS  Article  Google Scholar 

  33. Song SH, Fu SN, Sun XY, Li P, Wu JE, Dong TY, He F, Deng YY (2018) Identification of cyclic dipeptides from Escherichia coli as new antimicrobial agents against Ralstonia solanacearum. Molecules 23:214

    Article  Google Scholar 

  34. Thanner S, Drissner D, Walsh F (2016) Antimicrobial resistance in agriculture. MBio 7:e02215–e02227

    Google Scholar 

  35. Wada N, Yamanaka S, Shibato J, Rakwal R, Hirako S, Iizuka Y, Kim H, Matsumoto A, Kimura A, Takenoya F et al (2016) Behavioral and omics analyses study on potential involvement of dipeptide balenine through supplementation in diet of senescence-accelerated mouse prone 8. Genomics Data 10:38–50

    Article  Google Scholar 

  36. Wattana-Amorn P, Charoenwongsa W, Williams C, Crump MP, Apichaisataienchote B (2016) Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Nat Prod Res 30:1980–1983

    CAS  Article  Google Scholar 

  37. Woolhouse M, Ward M, van Bunnik B, Farrar J (2015) Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond B Biol Sci 370:20140083

    Article  Google Scholar 

  38. Xu QB, Gu JY, Zhao Y, Ke XT, Liu XD (2017) Antibacterial cotton fabric with enhanced durability prepared using l-cysteine and silver nanoparticles. Fiber Polym 18:2204–2211

    CAS  Article  Google Scholar 

  39. Xu QB, Duan PP, Zhang YY, Fu FY, Liu XD (2018) Double protect copper nanoparticles loaded on l-cysteine modified cotton fabric with durable antibacterial properties. Fiber Polym 19:2324–2334

    CAS  Article  Google Scholar 

  40. Zhong J, Wang WH, Yang XM, Yan XW, Liu R (2013) A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 39:1–5

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Ministry of Science and Technology, Taiwan (107-2218-E-006-016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu-Fon Chen.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsai, YC., Tang, CC., Wu, HH. et al. Antibacterial Activity of Cysteine-Derived Cationic Dipeptides. Int J Pept Res Ther 26, 1107–1114 (2020). https://doi.org/10.1007/s10989-019-09913-4

Download citation

Keywords

  • Cysteine
  • Cationic amino acid
  • Enterohaemorrhagic E. coli
  • Caenorhabditis elegans