Skip to main content

Advertisement

Log in

Studying Calcium Ion-Dependent Effect on the Inter-subunit Interaction Between the cTnC N-terminal Domain and cTnI C-terminal Switch Peptide of Human Cardiac Troponin via Chou’s 5-Steps Rule

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Human cardiac troponin (cTn) is a calcium ion (Ca2+)-sensitive hetero-trimer complex that consists of three subunits: cTnC, cTnI and cTnT. The protein is a primary biomarker and potential target for the diagnosis and therapy of myocardial necrosis in acute coronary syndrome. Previously, a minimal region (mSwt peptide) of cTnI C-terminal switch peptide is identified as a functionally required segment for mediating cTnI interaction with the cTnC N-terminal domain to which Ca2+ binds. Here, we attempt to investigate the Ca2+-dependent effect on the inter-subunit interaction between cTnC and cTnI at molecular level. The structure of Ca2+-bound and Ca2+-free cTnC N-terminal domains as well as their complexes with mSwt peptide are stripped from the crystal structure of full-length cTn complex, which are then subjected to 600-ns molecular dynamics simulations for conformational equilibrium and post energetics analysis. It is revealed that Ca2+ can effectively stabilize the native conformation of cTnC N-terminal domain and the tight binding mode of mSwt peptide to the domain; lack of Ca2+ would cause a considerable unfolding phenomenon in the domain, particularly in helices H1 and H5, and largely shift the interaction manner between the domain and peptide. In addition, there is also a significant difference between the binding curves of mSwt peptide to Ca2+-bound and Ca2+-free domains along the dynamics trajectory; the former monotonically increases over the whole simulations, whereas the latter exhibits a unimodal profile. Binding analysis also observes a significant concentration-dependent effect of Ca2+ on the domain–peptide affinity, that is, just a little of Ca2+ can improve the affinity remarkably. Overall, it is demonstrated that Ca2+ plays a crucial role in domain–peptide interaction and Ca2+ should bind very efficiently to the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Althaus IW, Gonzales AJ, Chou JJ, Diebel MR, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F (1993a) The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem 268:14875–14880

    CAS  PubMed  Google Scholar 

  • Althaus IW, Chou JJ, Gonzales AJ, Diebel MR, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F (1993b) Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J Biol Chem 268:6119–6124

    CAS  PubMed  Google Scholar 

  • Althaus IW, Chou JJ, Gonzales AJ, Diebel MR, Kezdy FJ, Romero DL, Aristoff PA, Tarpley WG, Reusser F (1993c) Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry 32:6548–6554

    CAS  PubMed  Google Scholar 

  • Bai Z, Hou S, Zhang S, Li Z, Zhou P (2017) Targeting self-binding peptides as a novel strategy to regulate protein activity and function: a case study on the proto-oncogene tyrosine protein kinase c-Src. J Chem Inf Model 57:835–845

    CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 2:235–242

    Google Scholar 

  • Cheng X, Xiao X (2017) pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol BioSyst 13:1722–1727

    CAS  PubMed  Google Scholar 

  • Chou KC (1989) Graphic rules in steady and non-steady enzyme kinetics. J Biol Chem 264:12074–12079

    CAS  PubMed  Google Scholar 

  • Chou KC (1990) Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophys Chem 35:1–24

    CAS  PubMed  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins 43:246–255

    CAS  PubMed  Google Scholar 

  • Chou KC (2005a) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    CAS  PubMed  Google Scholar 

  • Chou KC (2005b) Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res 4:1681–1686

    CAS  PubMed  Google Scholar 

  • Chou KC (2011) Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 273:236–247

    CAS  PubMed  Google Scholar 

  • Chou KC (2015) Impacts of bioinformatics to medicinal chemistry. Med Chem 11:218–234

    CAS  PubMed  Google Scholar 

  • Chou KC (2017) An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr Top Med Chem 17:2337–2358

    CAS  PubMed  Google Scholar 

  • Chou KC, Chen NY (1977) The biological functions of low-frequency phonons. Sci Sinica 20:447–457

    CAS  Google Scholar 

  • Chou KC, Forsen S (1980) Graphical rules for enzyme-catalyzed rate laws. Biochem J 187:829–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou KC, Forsen S (1981) Graphical rules of steady-state reaction systems. Can J Chem 59:737–755

    Google Scholar 

  • Chou KC, Jiang SP, Liu WM, Fee CH (1979) Graph theory of enzyme kinetics: 1. Steady-state reaction system. Sci Sin 22:341–358

    CAS  Google Scholar 

  • Chou KC, Forsen S, Zhou GQ (1980) Three schematic rules for deriving apparent rate constants. Chem Scr 16:109–113

    Google Scholar 

  • Chou KC, Carter RE, Forsen S (1981) A new graphical method for deriving rate equations for complicated mechanisms. Chem Scr 18:82–86

    CAS  Google Scholar 

  • Chou KC, Zhang CT, Maggiora GM (1994) Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers 34:143–153

    CAS  PubMed  Google Scholar 

  • Chou KC, Lin WZ, Xiao X (2011) Wenxiang: a web-server for drawing wenxiang diagrams. Nat Sci 3:862–865

    CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1983) Particale mesh Ewald and N.log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Google Scholar 

  • Davis JP, Tikunova SB (2008) Ca2+ exchange with troponin C and cardiac muscle dynamics. Cardiovasc Res 77:619–626

    CAS  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    CAS  PubMed  Google Scholar 

  • Haikala H, Linden IB (1995) Mechanisms of action of calcium-sensitizing drugs. J Cardiovasc Pharmacol 26:S10–S19

    CAS  PubMed  Google Scholar 

  • Huang RB, Du QS, Wang CH (2008) An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of influenza A virus. Biochem Biophys Res Commun 377:1243–1247

    CAS  PubMed  Google Scholar 

  • Hussain W, Khan YD, Rasool N, Khan SA (2019a) SPalmitoylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins. Anal Biochem 568:14–23

    CAS  PubMed  Google Scholar 

  • Hussain W, Khan YD, Rasool N, Khan SA (2019b) SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J Theor Biol 468:1–11

    CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Phys Chem 79:926–935

    CAS  Google Scholar 

  • Li MX, Robertson IM, Sykes BD (2008) Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Biochem Biophys Res Commun 369:88–99

    CAS  PubMed  Google Scholar 

  • Li Z, Yan F, Miao Q, Meng Y, Wen L, Jiang Q, Zhou P (2019a) Self-binding peptides: binding-upon-folding versus folding-upon-binding. J Theor Biol 469:25–34

    CAS  PubMed  Google Scholar 

  • Li Z, Miao Q, Yan F, Meng Y, Zhou P (2019b) Machine learning in quantitative protein-peptide affinity prediction: implications for therapeutic peptide design. Curr Drug Metab 20:170–176

    CAS  PubMed  Google Scholar 

  • Liu B, Liu F, Wang X, Chen J, Fang L (2015) Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res 43:W65–W71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Du T, Zhou P, Yang L, Mei H, Ng H, Zhang W, Shu M, Tong W, Shi L, Mendrick DL, Hong H (2015) Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions. Comb Chem High Throughput Screen 18:296–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu WR, Jiang SY, Xu ZC, Xiao X (2017) iRNAm 5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget 8:41178–41188

    PubMed  PubMed Central  Google Scholar 

  • Ren Y, Chen X, Feng M, Wang Q, Zhou P (2011) Gaussian process: a promising approach for the modeling and prediction of peptide binding affinity to MHC proteins. Protein Pept Lett 18:670–678

    CAS  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1997) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Google Scholar 

  • Saíz-Urra L, Cabrera MA, Froeyen M (2011) Exploring the conformational changes of the ATP binding site of gyrase B from Escherichia coli complexed with different established inhibitors by using molecular dynamics simulation: protein-ligand interactions in the light of the alanine scanning and free energy decomposition methods. J Mol Graph Model 29:726–739

    PubMed  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Jackson PG, Makan J (2004) Cardiac troponins. J Clin Pathol 57:1025–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Yamashita A, Maeda K, Maéda Y (2003) Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature 424:35–41

    CAS  PubMed  Google Scholar 

  • Tian F, Lv Y, Zhou P, Yang L (2011) Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses. J Comput Aided Mol Des 25:947–958

    CAS  PubMed  Google Scholar 

  • Tian F, Tan R, Guo T, Zhou P, Yang L (2013) Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models. Biosystems 113:40–49

    CAS  PubMed  Google Scholar 

  • Tian F, Yang C, Wang C, Guo T, Zhou P (2014) Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A. J Mol Model 20:2257

    PubMed  Google Scholar 

  • Wang SQ, Du QS (2007) Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun 354:634–640

    CAS  PubMed  Google Scholar 

  • White SP, Cohen C, Phillips GN (1987) Structure of co-crystals of tropomyosin and troponin. Nature 325:826–828

    CAS  PubMed  Google Scholar 

  • Xiao X, Min JL, Lin WZ, Liu Z, Cheng X (2015) iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J Biomol Struct Dyn 33:2221–2233

    CAS  PubMed  Google Scholar 

  • Xiao X, Cheng X, Chen G, Mao Q (2018) pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics 26:S0888–S7543

    Google Scholar 

  • Xu Y, Huang R, Gu J, Jiang W (2017) Derivation of inhibitory peptides to target the cardiac troponin C-I interaction as potential therapeutics for heart failure. Int J Pept Res Ther 23:387–392

    CAS  Google Scholar 

  • Yang Y, Liu H, Yao X (2012) Understanding the molecular basis of MK2-p38α signaling complex assembly: insights into protein-protein interaction by molecular dynamics and free energy studies. Mol BioSyst 8:2106–2118

    CAS  PubMed  Google Scholar 

  • Yang C, Wang C, Zhang S, Huang J, Zhou P (2015a) Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol Simul 41:741–751

    CAS  Google Scholar 

  • Yang C, Zhang S, He P, Wang C, Huang J, Zhou P (2015b) Self-binding peptides: folding or binding. J Chem Inf Model 55:329–342

    CAS  PubMed  Google Scholar 

  • Yang C, Zhang S, Bai Z, Hou S, Wu D, Huang J, Zhou P (2016) A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol BioSyst 12:1201–1213

    CAS  PubMed  Google Scholar 

  • Yu H, Zhou P, Deng M, Shang Z (2014) Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition. J Chem Inf Model 54:2022–2032

    CAS  PubMed  Google Scholar 

  • Zhou GP (2011) The disposition of the LZCC protein residues in Wenxiang diagram provides new insights into the protein-protein interaction mechanism. J Theor Biol 284:142–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou GP, Deng MH (1984) An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem J 222:169–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Wang C, Tian F, Ren Y, Yang C, Huang J (2013a) Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des 27:67–78

    PubMed  Google Scholar 

  • Zhou P, Yang C, Ren Y, Wang C, Tian F (2013b) What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem 141:2967–2973

    CAS  PubMed  Google Scholar 

  • Zhou P, Zhang S, Wang Y, Yang C, Huang J (2016) Structural modeling of HLA-B*1502 peptide carbamazepine T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome toxic epidermal necrolysis. J Biomol Struct Dyn 34:1806–1817

    CAS  PubMed  Google Scholar 

  • Zhou P, Hou S, Bai Z, Li Z, Wang H, Chen Z, Meng Y (2018) Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif Cells Nanomed Biotechnol 46:1122–1131

    CAS  PubMed  Google Scholar 

  • Zhou P, Miao Q, Yan F, Li Z, Jiang Q, Wen L, Meng Y (2019) Is protein context responsible for peptide-mediated interactions? Mol Omics. https://doi.org/10.1039/c9mo00041k

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Yingjia Xu for valuable discussions and software helps. This work was supported by the AJHJU foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Lv, Y., Ding, Y. et al. Studying Calcium Ion-Dependent Effect on the Inter-subunit Interaction Between the cTnC N-terminal Domain and cTnI C-terminal Switch Peptide of Human Cardiac Troponin via Chou’s 5-Steps Rule. Int J Pept Res Ther 26, 675–683 (2020). https://doi.org/10.1007/s10989-019-09875-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09875-7

Keywords

Navigation