Computational Design and Analysis of a Poly-Epitope Fusion Protein: A New Vaccine Candidate for Hepatitis and Poliovirus

Abstract

Infections with HCV, HBV and poliovirus are still considered to be substantial global health burdens. Vaccination is one of the most important preventive strategies against these infections. Multi-epitope vaccines are presented as novel strategies to circumvent the limitations associated with conventional vaccines. Given these circumstances, a multi-epitope protein was designed using the predicted high score epitopes of the antigens from HCV, HBV and Poliovirus. To this end, the sequences of HCV core protein, HBV small surface antigen and VPs of Poliovirus were collected and the consensus sequence of these antigens were obtained using BLAST and MSA analyses. Then, the physicochemical properties of these antigens along with their high score B and T-cell epitopes were predicted using various softwares. The obtained epitopes were connected with proper linkers to build the final 500 amino acids HHP protein. The secondary and tertiary structure of the HHP as well as its physicochemical properties and immunological properties were predicted using different tools. Assessment of various properties of the designed protein indicated that the HHP poly-epitope is an immunogenic and non-allergen antigen, which can derive humoral and cellular immune responses against HCV, HBV and Poliovirus infections.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adu F (2005) The virology of the polio virus. Ann Ibadan Postgrad Med 3(1):13–19

    Google Scholar 

  2. Ali M, Pandey RK, Khatoon N, Narula A, Mishra A, Prajapati VK (2017) Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci Rep 7(1):9232

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Arashkia A, Roohvand F, Memarnejadian A, Aghasadeghi MR, Rafati S (2010) Construction of HCV-polytope vaccine candidates harbouring immune-enhancer sequences and primary evaluation of their immunogenicity in BALB/c mice. Virus Genes 40(1):44

    CAS  PubMed  Article  Google Scholar 

  4. Bai Y, Shen W-C (2006) Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharma Res 23(9):2116–2121

    CAS  Article  Google Scholar 

  5. Benkert P, Biasini M, Schwede T (2010) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Bhasin M, Lata S, Raghava GP (2007) TAPPred prediction of TAP-binding peptides in antigens. Methods Mol Biol 409:381–386

    CAS  PubMed  Article  Google Scholar 

  7. Chauhan V, Rungta T, Goyal K, Singh MP (2019) Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci Rep 9(1):2517

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D 66(1):12–21

    CAS  Article  Google Scholar 

  9. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsletter on protein crystallography. 40:82–92

  10. Delpeyroux F, Chenciner N, Lim A, Malpiece Y, Blondel B, Crainic R et al (1986) A poliovirus neutralization epitope expressed on hybrid hepatitis B surface antigen particles. Science 233(4762):472–475

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Delpeyroux F, Peillon N, Blondel B, Crainic R, Streeck R (1988) Presentation and immunogenicity of the hepatitis B surface antigen and a poliovirus neutralization antigen on mixed empty envelope particles. J Virol 62(5):1836–1839

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v. 2—a server for in silico prediction of allergens. J Mol Model 20(6):2278

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):4

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43(W1):W389–W394

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Emini EA, Jameson BA, Wimmer E (1984) Identification of a new neutralization antigenic site on poliovirus coat protein VP2. J Virol 52(2):719–721

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Ende AR, Kim NH, Yeh MM, Harper J, Landis CS (2015) Fulminant hepatitis B reactivation leading to liver transplantation in a patient with chronic hepatitis C treated with simeprevir and sofosbuvir: a case report. J Med Case Rep 9(1):164

    PubMed  PubMed Central  Article  Google Scholar 

  17. Fong TL, Di Bisceglie AM, Waggoner JG, Banks SM, Hoofnagle JH (1991) The significance of antibody to hepatitis C virus in patients with chronic hepatitis B. Hepatology 14(1):64–67

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Ganji M, Khalili S, Mard-Soltani M, Khalesi B, Karkhah A, Amani J. A precisely designed immunotoxin against VCAM1 consisting of a humanized antibody variable domain fused to granzyme: an in silico approach. Int J Pept Res Ther. 2019:1–9

  19. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Springer, Berlin, pp. 571–607

    Google Scholar 

  20. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6):681–684

    CAS  Article  Google Scholar 

  21. Guan P, Hattotuwagama CK, Doytchinova IA, Flower DR (2006) MHCPred 2.0. Appl Bioinform 5(1):55–61

    CAS  Article  Google Scholar 

  22. Guillen G, Aguilar J, Duenas S, Hermida L, Guzmán M, Penton E et al (2010) Virus-Like Particles as vaccine antigens and adjuvants: application to chronic disease, cancer immunotherapy and infectious disease preventive strategies. Procedia Vaccinol 2(2):128–133

    CAS  Article  Google Scholar 

  23. He L, Cheng Y, Kong L, Azadnia P, Giang E, Kim J et al (2015) Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding. Sci Rep 5:12501

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Heo L, Park H, Seok C (2013) GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 41(W1):W384–W388

    PubMed  PubMed Central  Article  Google Scholar 

  25. Huang X-j, Lü X, Lei Y-f, Yang J, Yao M, Lan H-y et al (2013) Cellular immunogenicity of a multi-epitope peptide vaccine candidate based on hepatitis C virus NS5A, NS4B and core proteins in HHD-2 mice. J Virol Methods 189(1):47–52

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24–W29

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Jorba J, Diop OM, Iber J, Henderson E, Sutter RW, Wassilak SG et al (2017) Update on vaccine-derived polioviruses—worldwide, January 2016–June 2017. MMWR Morbid Mortal Wkl Rep 66(43):1185

    Article  Google Scholar 

  28. Kao J-H, Chen D-S (2002) Global control of hepatitis B virus infection. Lancet Infect Dis 2(7):395–403

    PubMed  Article  PubMed Central  Google Scholar 

  29. Karpenko LI, Bazhan SI, Antonets DV, Belyakov IM (2014) Novel approaches in polyepitope T-cell vaccine development against HIV-1. Exp Rev Vaccines 13(1):155–173

    CAS  Article  Google Scholar 

  30. Kazemi F, Arab SS, Mohajel N, Keramati M, Niknam N, Aslani MM et al (2018) Computational simulations assessment of mutations impact on streptokinase (SK) from a group G streptococci with enhanced activity–insights into the functional roles of structural dynamics flexibility of SK and stabilization of SK–µplasmin catalytic complex. J Biomol Struct Dyn. 28:1–12

    Google Scholar 

  31. Keşmir C, Nussbaum AK, Schild H, Detours V, Brunak S (2002) Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15(4):287–296

    PubMed  Article  Google Scholar 

  32. Kew O, Pallansch M (2018) Breaking the last chains of poliovirus transmission: progress and challenges in global polio eradication. Annu Rev Virol 5(1):427–451

    CAS  PubMed  Article  Google Scholar 

  33. Khalili S, Rasaee MJ, Mousavi SL, Amani J, Jahangiri A, Borna H (2017) In silico prediction and in vitro verification of a novel multi-epitope antigen for HBV detection. Mol Genet Microbiol Virol 32(4):230–240

    Article  Google Scholar 

  34. Khatoon N, Pandey RK, Prajapati VK (2017) Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 7(1):8285

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Konstantinou D, Deutsch M (2015) The spectrum of HBV/HCV coinfection: epidemiology, clinical characteristics, viralinteractions and management. Ann Gastroenterol 28(2):221

    PubMed  PubMed Central  Google Scholar 

  36. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J et al (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77(S9):114–122

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes1. J Mol Biol 305(3):567–580

    CAS  PubMed  Article  Google Scholar 

  38. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83

    PubMed  Article  Google Scholar 

  39. Magnan CN, Zeller M, Kayala MA, Vigil A, Randall A, Felgner PL et al (2010) High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 26(23):2936–2943

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Mard-Soltani M, Rasaee MJ, Khalili S, Sheikhi A, Hedayati M, Ghaderi-Zefrehi H et al (2018) The effect of differentially designed fusion proteins to elicit efficient anti-human thyroid stimulating hormone immune responses. Iran J Allergy Asthma Immunol 17(2):158–170

    PubMed  PubMed Central  Google Scholar 

  41. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. McLauchlan J (2000) Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7(1):2–14

    CAS  PubMed  Article  Google Scholar 

  43. McMahon BJ (2014) Chronic hepatitis B virus infection. Med Clin North Am 98(1):39–54

    PubMed  Article  Google Scholar 

  44. Melief CJ, Van Der Burg SH (2008) Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8(5):351

    CAS  PubMed  Article  Google Scholar 

  45. Memarnejadian A, Roohvand F (2010) Fusion of HBsAg and prime/boosting augment Th1 and CTL responses to HCV polytope DNA vaccine. Cell Immunol 261(2):93–98

    CAS  PubMed  Article  Google Scholar 

  46. Mishra S, Losikoff PT, Self AA, Terry F, Ardito MT, Tassone R et al (2014) Peptide-pulsed dendritic cells induce the hepatitis C viral epitope-specific responses of naïve human T cells. Vaccine 32(26):3285–3292

    CAS  PubMed  Article  Google Scholar 

  47. Mohamed SA, Mesa G (1997) Dual infection with hepatitis C and B viruses: clinical and histological study in Saudi patients. Hepato-gastroenterology 44(17):1404–1406

    Google Scholar 

  48. Mohammadzadeh S, Roohvand F, Memarnejadian A, Jafari A, Ajdary S, Salmanian A-H et al (2016) Co-expression of hepatitis C virus polytope–HBsAg and p19-silencing suppressor protein in tobacco leaves. Pharm Biol 54(3):465–473

    CAS  PubMed  Article  Google Scholar 

  49. Narula A, Pandey RK, Khatoon N, Mishra A, Prajapati VK (2018) Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. Infect Genet Evol 61:4–15

    CAS  PubMed  Article  Google Scholar 

  50. Nezafat N, Ghasemi Y, Javadi G, Khoshnoud MJ, Omidinia E (2014) A novel multi-epitope peptide vaccine against cancer: an in silico approach. J Theor Biol 349:121–134

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Offord V, Coffey T, Werling D (2010) LRRfinder: a web application for the identification of leucine-rich repeats and an integrative Toll-like receptor database. Dev Comp Immunol 34(10):1035–1041

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Pan W, Chen DS, Lu YJ, Sun FF, Xu HW, Zhang YW et al (2017) Bioinformatic prediction of the epitopes of Echinococcus granulosus antigen 5. Biomed Rep 6(2):181–187

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. Papadopoulos N, Papavdi M, Pavlidou A, Konstantinou D, Kranidioti H, Kontos G et al (2018) Hepatitis B and C coinfection in a real-life setting: viral interactions and treatment issues. Ann Gastroenterol 31(3):365

    PubMed  PubMed Central  Google Scholar 

  54. Patient R, Hourioux C, Vaudin P, Pagès J-C, Roingeard P (2009) Chimeric hepatitis B and C viruses envelope proteins can form subviral particles: implications for the design of new vaccine strategies. New Biotechnol 25(4):226–234

    CAS  Article  Google Scholar 

  55. Pelte C, Cherepnev G, Wang Y, Schoenemann C, Volk H-D, Kern F (2004) Random screening of proteins for HLA-A* 0201-binding nine-amino acid peptides is not sufficient for identifying CD8 T cell epitopes recognized in the context of HLA-A* 0201. J Immunol 172(11):6783–6789

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. PIWord L. JM 2003 structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins.50:437450

  57. Ponomarenko J, Bui H-H, Li W, Fusseder N, Bourne PE, Sette A et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9(1):514

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Qin Y, Liao P (2018) Hepatitis B virus vaccine breakthrough infection: surveillance of S gene mutants of HBV. Acta Virol 62(2):115–121

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. Ranjbar MM, Ghorban K, Alavian SM, Keyvani H, Dadmanesh M, Ardakany AR et al (2013) GB virus C/hepatitis G virus envelope glycoprotein E2: computational molecular features and immunoinformatics study. Hepat Mon 13(12):e15342

    PubMed  PubMed Central  Article  Google Scholar 

  60. Reche PA, Glutting JP, Zhang H, Reinherz EL (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56(6):405–419

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. Reddy Chichili VP, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein–protein interactions. Protein Sci 22(2):153–167

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Rizzetto M, Ciancio A (2008) Chronic HBV-related liver disease. Mol Aspects Med 29(1):72–84

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. Rui LX, Park YM, Choi JY, Kim BS, Jung G (1998) Detection of antibodies against DNA polymerase of hepatitis B virus in HBsAg-positive sera using ELISA. Korean J Intern Med 13(2):95–98

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Saha S, Raghava G (ed) (2004) BcePr: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. International conference on artificial immune systems, Springer

  65. Saha S, Raghava G (2006a) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34(suppl_2):W202–W209

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Saha S, Raghava G (2006b) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. Scheel TK, Rice CM (2013) Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19(7):837

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Schuler MM, Nastke MD, Stevanovikc S (2007) SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol 409:75–93

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. Shahsavandi S, Ebrahimi MM, Sadeghi K, Mahravani H (2015) Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses. Virol Sin 30(3):200–207

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Singh H, Raghava G (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237

    CAS  PubMed  Article  Google Scholar 

  71. Tan S-L. Hepatitis C (2006) Viruses: genomes and molecular biology. Horizon Scientific Press, Norwich

    Google Scholar 

  72. Taylor R (2000) Bioinformatics and molecular analysis section (BIMAS) HLA peptide binding predictions.

  73. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR et al (2014) The immune epitope database (IEDB) 3.0. Nucleic acids research 43(D1):D405–D412

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38(suppl_2):W469–W473

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Wetz K, Habermehl K-O (1982) Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of poliovirus. J Gen Virol 59(2):397–401

    CAS  PubMed  Article  Google Scholar 

  76. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl_2):W407–W410

    PubMed  PubMed Central  Article  Google Scholar 

  77. Wriggers W, Chakravarty S, Jennings PA (2005) Control of protein functional dynamics by peptide linkers. Peptide Sci 80(6):736–746

    CAS  Article  Google Scholar 

  78. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Yazdanian M, Memarnejadian A, Mahdavi M, Motevalli F, Sadat SM, Vahabpour R et al. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice. Adv Biomed Res. 2015;4

  80. Yim T-J, Tang S, Andino R (1996) Poliovirus recombinants expressing hepatitis B virus antigens elicited a humoral immune response in susceptible mice. Virology 218(1):61–70

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Deputy of Shahid Beheshti University of Medical Sciences [Grant Number: 10221] and it was conducted at the Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences in partial fulfillment of the Ph.D thesis of Mrs. Armina Alagheband Bahrami.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mojgan Bandehpour.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahrami, A.A., Bandehpour, M., Khalesi, B. et al. Computational Design and Analysis of a Poly-Epitope Fusion Protein: A New Vaccine Candidate for Hepatitis and Poliovirus. Int J Pept Res Ther 26, 389–403 (2020). https://doi.org/10.1007/s10989-019-09845-z

Download citation

Keywords

  • In silico
  • Bioinformatic
  • Poly-epitope
  • Hepatitis
  • Poliovirus
  • Vaccination