Skip to main content

Advertisement

Log in

In Silico Designing a Candidate Vaccine Against Breast Cancer

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is the most common type of women’s cancer with a prevalence of about 25%, although it is rare in men (< 1%). Until now, BC therapy approaches have not been successful for various reasons. The purpose of this study was to design a candidate vaccine against BC using bioinformatics tools. Herein, in silico design of a fusion vaccine candidate containing extracellular domain of HER-2/neu protein and N-terminal sequence of GP96 protein (NTGP96) were performed. Different bioinformatics and immunoinformatics softwares were used to study the important characteristics of the designed vaccine, including physicochemical properties, secondary, and 3D structures, as well as antigenicity and allergenicity. Structural and immunological computational results indicated the potential of our designed construct for proper stimulation of cellular and humoral immune responses against BC. According to the obtained data, the candidate vaccine could be introduced for BC therapy, after the efficacy of it was confirmed by in vivo and in vitro immunological assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhoon BA, Gupta SK, Verma V, Dhaliwal G, Srivastava M, Gupta SK, Ahmad RF (2010) In silico designing and optimization of anti-breast cancer antibody mimetic oligopeptide targeting HER-2 in women. J Mol Graph Model 28(7):664–669

    Article  CAS  PubMed  Google Scholar 

  • Andreatta M, Nielsen M (2015) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari HR, Raghava GP (2010) Identification of conformational B-cell epitopes in an antigen from its primary sequence. Immun Res 6:6

    Article  CAS  Google Scholar 

  • Argos P (1990) An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211:943–958

    Article  CAS  PubMed  Google Scholar 

  • Ashokan K, Pillai M (2008) In silico characterization of silk fibroin protein using computational tools and servers. Asian J Exp Sci 22265–22274

  • Atapour A, Mokarram P, Mostafavi-Pour Z, Ramezani A (2017) Molecular cloning, expression, and purification of a recombinant fusion protein (rNT-gp96-NT300). BioPharm Int 30:38–44

    CAS  Google Scholar 

  • Atapour A, Mokarram P, MostafaviPour Z, Hosseini SY, Ghasemi Y, Mohammadi S, Nezafat N (2018) Designing a fusion protein vaccine against HCV: an in silico approach. Int J Pept Res Ther. https://doi.org/10.1007/s10989-018-9735-4

    Article  Google Scholar 

  • Baloria U, Akhoon BA, Gupta SK, Sharma S, Verma V (2012) In silico proteomic characterization of human epidermal growth factor receptor 2 (HER-2) for the mapping of high affinity antigenic determinants against breast cancer. Amino Acids 42(4):1349–1360

    Article  CAS  PubMed  Google Scholar 

  • Bhasin M, Raghava G (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22:3195–3204

    Article  CAS  PubMed  Google Scholar 

  • Billod J-M, Lacetera A, Guzmán-Caldentey J, Martín-Santamaría S (2016) Computational approaches to toll-like receptor 4 modulation. Molecules 21:994

    Article  CAS  PubMed Central  Google Scholar 

  • Bjellqvist B et al (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Björklund ÅK, Soeria-Atmadja D, Zorzet A, Hammerling U, Gustafsson MG (2004) Supervised identification of allergen-representative peptides for in silico detection of potentially allergenic proteins. Bioinformatics 21:39–50

    Article  CAS  PubMed  Google Scholar 

  • Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis work bench nucleic acids research 41:W349–W357

  • Caballero MT et al (2015) TLR4 genotype and environmental LPS mediate RSV bronchiolitis through Th2 polarization. J Clin Investig 125:571–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderwood SK, Gong J, Murshid A (2016) Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front Immunol 7:159

    PubMed  PubMed Central  Google Scholar 

  • Chauhan N, Tiwari S, Iype T, Jain U (2017) An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators. Exp Rev Vaccines 16:491–502

    Article  CAS  Google Scholar 

  • Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    Article  CAS  PubMed  Google Scholar 

  • Childers NK, Miller KL, Tong G, Llarena JC, Greenway T, Ulrich JT, Michalek SM (2000) Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect Immun 68:5509–5516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cluff CW (2009) Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. In: Lipid A in cancer therapy. Springer, New York, pp 111–123

    Chapter  Google Scholar 

  • Colovos C, Yeates T (1993) ERRAT: an empirical atom-based method for validating protein structures. Protein Sci 2:1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conniot J et al (2014) Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanda SK, Vir P, Raghava GP (2013) Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 8:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Didierlaurent AM et al (2009) AS04, an aluminum salt-and TLR-4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 183:6186–6197

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v. 2—a server for in silico prediction of allergens. J Mol Model 20:2278

    Article  CAS  PubMed  Google Scholar 

  • Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:4

    Article  CAS  Google Scholar 

  • Doytchinova IA, Flower DR (2018) In silico prediction of cancer immunogens: current state of the art. BMC Immunol 19:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EL-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recogn Interdiscip 21:243–255

    Article  CAS  Google Scholar 

  • Emens LA (2008) Cancer vaccines: on the threshold of success. Exp Opin Emerg Drugs 13:295–308

    Article  CAS  Google Scholar 

  • Fooladi AAI, Hosseini HM, Amani J (2015) An in silico chimeric vaccine targeting breast cancer containing inherent adjuvant. Iran J Cancer Prev 8:3

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Springer, New York, pp 571–607

    Chapter  Google Scholar 

  • Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajizadeh MR, Mokarram P (2013) Recombinant nonstructural 3 protein, rNS3, of hepatitis C virus along with recombinant GP96 induce IL-12, TNFα and α5integrin expression in antigen presenting cells. Hepat Mon 13:6

    Article  Google Scholar 

  • Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseinzadeh S, Daemi A (2012) Heat shock proteins as the efficient vehicle in cancer. J Solid Tumors 2:47

    Article  Google Scholar 

  • Hu Z, Ott PA, Wu CJ (2018) Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18:168

    Article  CAS  PubMed  Google Scholar 

  • Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  PubMed  Google Scholar 

  • Imani-Fooladi AA, Yousefi F, Mousavi SF, Amani J (2014) In silico design and analysis of TGFαl3-seb fusion protein as “a new antitumor agent” candidate by ligand-targeted superantigens technique. Iran J Cancer Prev 7:152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahangiri A, Amani J, Halabian R (2018) In silico analyses of staphylococcal enterotoxin B as a DNA vaccine for cancer therapy. Int J Pept Res Ther 24:131–142

    Article  CAS  Google Scholar 

  • Jensen KK et al (2018) Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatoon N, Ojha R, Mishra A, Prajapati VK (2018) Examination of antigenic proteins of Trypanosoma cruzi to fabricate an epitope-based subunit vaccine by exploiting epitope mapping mechanism. Vaccine 36:6290–6300

    Article  CAS  PubMed  Google Scholar 

  • Li SG, Li L (2013) Targeted therapy in HER2-positive breast cancer. Biomed Rep 1:499–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14:45–51

    Article  CAS  PubMed  Google Scholar 

  • Liu W et al (2016) Interaction of toll-like receptors with the molecular chaperone Gp96 is essential for its activation of cytotoxic T lymphocyte response. PLoS ONE 11:e0155202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovell SC et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins Struct Funct Bioinform 50:437–450

    Article  CAS  Google Scholar 

  • Magnan CN, Randall A, Baldi P (2009) SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 25:2200–2207

    Article  CAS  PubMed  Google Scholar 

  • Magnan CN, Zeller M, Kayala MA, Vigil A, Randall A, Felgner PL, Baldi P (2010) High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 26:2936–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdavi M, Mohabatkar H, Keyhanfar M, Dehkordi AJ, Rabbani M (2012) Linear and conformational B cell epitope prediction of the HER 2 ECD-subdomain III by in silico methods. Asian Pac J Cancer Prev 13:3053–3059

    Article  PubMed  Google Scholar 

  • Mahdavi M, Keyhanfar M, Jafarian A, Mohabatkar H, Rabbani M (2015) Production and characterization of new anti-HER2 monoclonal antibodies. Monoclon Antib Immunodiagn Immunother 34:213–221

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi S et al (2018) In silico analysis of different signal peptides for the excretory production of recombinant NS3-GP96 fusion protein in Escherichia coli. Int J Pept Res Ther. https://doi.org/10.1007/s10989-018-9775-9

    Article  Google Scholar 

  • Mohit E, Bolhassani A, Zahedifard F, Taslimi Y, Rafati S (2012) The contribution of NT-gp96 as an adjuvant for increasing HPV16 E7-specific immunity in C57BL/6 mouse model. Scand J Immunol 75:27–37

    Article  CAS  PubMed  Google Scholar 

  • Nezafat N, Ghasemi Y, Javadi G, Khoshnoud MJ, Omidinia E (2014) A novel multi-epitope peptide vaccine against cancer: an in silico approach. J Theor Biol 349:121–134

    Article  CAS  PubMed  Google Scholar 

  • Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y (2017) Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Mol BioSyst 13:699–713

    Article  CAS  PubMed  Google Scholar 

  • Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8(1):238

    Article  CAS  Google Scholar 

  • Nold-Petry CA et al (2017) gp96 peptide antagonist gp96-ii confers therapeutic effects in murine intestinal inflammation. Front Immunol 8:1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozturk OG (2012) HLA alleles in breast cancer. Pathol Oncol Res 18:1099–1099

    Article  PubMed  Google Scholar 

  • Palladini A et al (2018) Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology 7:e1408749

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey RK, Bhatt TK, Prajapati VK (2018) Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci Rep 8:1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pihlasalo S, Auranen L, Hänninen P, Härmä H (2012) Method for estimation of protein isoelectric point. Anal Chem 84:8253–8258

    Article  CAS  PubMed  Google Scholar 

  • Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008 Dec) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9(1):514

    Article  CAS  Google Scholar 

  • Quevedo-Diaz MA, Song C, Xiong Y, Chen H, Wahl LM, Radulovic S, Medvedev AE (2010) Involvement of TLR2 and TLR4 in cell responses to Rickettsia akari. J Leukoc Biol 88:675–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp UK, Kaufmann SH (2004) DNA vaccination with gp96-peptide fusion proteins induces protection against an intracellular bacterial pathogen. Int Immunol 16:597–605

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha S, Raghava G (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34:W202–W209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen Gupta P, Mandal B, Bandyopadhyay A (2013) In silico characterization of human cyclooxygenase using computational tools and servers. Int J Inst Pharm Life Sci 3:111

    Google Scholar 

  • Shah P, Mistry J, Reche PA, Gatherer D, Flower DR (2018) In silico design of Mycobacterium tuberculosis epitope ensemble vaccines. Mol Immunol 97:56–62

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov M, Multhoff G (2016) Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171

    PubMed  PubMed Central  Google Scholar 

  • Shin W-H, Lee GR, Heo L, Lee H, Seok C (2014) Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Des 2:1–11

    Google Scholar 

  • Shirota H, Tross D, Klinman D (2015) CpG oligonucleotides as cancer vaccine adjuvants. Vaccines 3:390–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumar K, Balaji S (2007) In silico characterization of antifreeze proteins using computational tools and servers. J Chem Sci 119:571–579

    Article  CAS  Google Scholar 

  • Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7:842–854

    Article  CAS  PubMed  Google Scholar 

  • Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S (2015) An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform 53:405–414

    Article  PubMed  Google Scholar 

  • Steinhagen F, Kinjo T, Bode C, Klinman DM (2011) TLR-based immune adjuvants. Vaccine 29:3341–3355

    Article  CAS  PubMed  Google Scholar 

  • Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Controll Release 146:264–275

    Article  CAS  Google Scholar 

  • Torchala M, Bates PA (2014) Predicting the structure of protein–protein complexes using the SwarmDock web server. In: Protein structure prediction. Springer, New York, pp 181–197

    Chapter  Google Scholar 

  • Waterhouse A et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Sher X (2018) Systematically benchmarking peptide-MHC binding predictors: from synthetic to naturally processed epitopes. PLoS Comput Biol 14:e1006457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J et al (2017) In silico analysis of epitope-based vaccine candidates against hepatitis B virus polymerase protein. Viruses 9:112

    Article  CAS  PubMed Central  Google Scholar 

  • Zininga T, Ramatsui L, Shonhai A (2018) Heat shock proteins as immunomodulants. Molecules 23:2846

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Shiraz University of Medical Sciences for supporting the conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Nezafat.

Ethics declarations

Conflict of interest

All the authors declare that they have none conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atapour, A., Negahdaripour, M., Ghasemi, Y. et al. In Silico Designing a Candidate Vaccine Against Breast Cancer. Int J Pept Res Ther 26, 369–380 (2020). https://doi.org/10.1007/s10989-019-09843-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09843-1

Keywords

Navigation