Skip to main content
Log in

High Level Activity of Recombinant Lysostaphin After Computer Simulation and Additive-Based Refolding

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Lysostaphin is a peptidoglycan hydrolase, produced by Staphylococcus simulans, which has illustrated significant bactericidal activities against Staphylococcus aureus species. Currently, recombination is the common approach of lysostaphin production. However, the recombinant produced lysostaphin shows weak antibacterial activities. The reason can be the aggregation of produced lysostaphin which leads to the destruction of natural protein folding. The most common strategy providing the best situation for correct refolding of the recombinant protein is dialysis. In this study, based on the computer simulations different condition of dialysis was applied to achieve the most significant antibacterial activity. In this study, lysostaphin was expressed in Escherichia coli (E. coli) BL21 (DE3) pLysS cells and purified by affinity chromatography. Various dialysis methods were employed to enable the protein to refold to its natural form. The results of final protein antibacterial activity evidenced the high efficiency of computer simulations estimation ability in predicting best dialysis buffer according to the interaction between protein and buffer additive compounds. Finally, it was confirmed that the buffer containing proline 0.15 M and glucose 0.2 M caused the best lysostaphin refolding. Employing computer simulation before initiating the dialysis process would be a novel efficient and economic pathway of protein folding recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasian SS, Ghaznavi Rad E, Akbari N, Zolfaghari MR, Pakzad I, Abtahi H (2015) Overexpression and enzymatic assessment of antigenic fragments of hyaluronidase recombinant protein from Streptococcus pyogenes. Jundishapur J Microbiol 8(1):e13653-e13653

    Google Scholar 

  • Aguzzi A, O’connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237

    Article  CAS  Google Scholar 

  • Akbari N, Khajeh K, Ghaemi N, Salemi Z (2010) Efficient refolding of recombinant lipase from Escherichia coli inclusion bodies by response surface methodology. Protein Expr Purif 70(2):254–259

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Watt B, Wahome PG, Mantis NJ, Robertus JD (2010) Identification of new classes of ricin toxin inhibitors by virtual screening. Toxicon 56(4):526–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastos MdCdF, Coutinho BG, Coelho MLV (2010) Lysostaphin: a staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals 3(4):1139–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffery ML, Dobosh PA, Richardson D (1998) Laboratory exercises using HyperChem. Hypercube, Gainesville

    Google Scholar 

  • Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of” hot spots” of aggregation in polypeptides. BMC Bioinf 8(1):65

    Article  Google Scholar 

  • Dajcs JJ, Hume EB, Moreau JM, Caballero AR, Cannon BM, O’Callaghan RJ (2000) Lysostaphin treatment of methicillin-resistant Staphylococcus aureus keratitis in the rabbit. Investig Ophthalmol Vis Sci 41(6):1432–1437

    CAS  Google Scholar 

  • Farhangnia L, Ghaznavi-Rad E, Mollaee N, Abtahi H (2014) Cloning, expression, and purification of recombinant Lysostaphin from Staphylococcus simulans. Jundishapur J Microbiol 7(5):e10009

    Article  PubMed  PubMed Central  Google Scholar 

  • Farjadi V, Abtahi H, Zolfaghari MR, Soufian S, Hasanzadeh L (2013) Expression, purification and evaluation of antigenicity of caga antigenic fragment of helicobacter pylori. Jundishapur J Microbiol 6(9):1–6

    Article  Google Scholar 

  • Gründling A, Schneewind O (2006) Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. J Bacteriol 188(7):2463–2472

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada H, Arakawa T, Shiraki K (2009) Effect of additives on protein aggregation. Curr Pharm Biotechnol 10(4):400–407

    Article  CAS  PubMed  Google Scholar 

  • King BF, Biel ML, Wilkinson BJ (1980) Facile penetration of the Staphylococcus aureus capsule by lysostaphin. Infect Immun 29(3):892–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumat T, Samuel D, Jayaraman G, Srimathi T, Yu C (1998) The role of proline in the prevention of aggregation during protein folding in vitro. IUBMB Life 46(3):509–517

    Article  Google Scholar 

  • Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, Van Voorhis WC (2012) Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS ONE 7(12):e52482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532. https://doi.org/10.1056/nejm199808203390806

    Article  CAS  PubMed  Google Scholar 

  • Macchi F, Eisenkolb M, Kiefer H, Otzen DE (2012) The effect of osmolytes on protein fibrillation. Int J Mol Sci 13(3):3801–3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molaee N, Abtahi H, Mosayebi G (2013) Expression of recombinant streptokinase from Streptococcus pyogenes and its reaction with infected human and murine sera. Iran J Basic Med Sci 16(9):985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Shet D, Prasanna C, Atreya HS (2013) High yield expression of proteins in E. coli for NMR studies. Adv Biosci Biotechnol 4(06):751

    Article  CAS  Google Scholar 

  • Nuc P, Nuc K (2006) Recombinant protein production in Escherichia coli. Postepy Biochem 52(4):448–456

    CAS  PubMed  Google Scholar 

  • Palmer I, Wingfield PT (2004) Preparation and extraction of insoluble (inclusion-body) proteins from Escherichia coli. Curr Protocols Protein Sci 6.3(1–6.3):20

    Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  • Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang P-W, Chang M-M, Chang D-K (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9(2):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satishkumar R, Sankar S, Yurko Y, Lincourt A, Shipp J, Heniford BT, Vertegel A (2011) Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob Agents Chemother 55(9):4379–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler CA, Schuhardt VT (1965) Purification and properties of lysostaphin—a lytic agent for Staphylococcus aureus. Biochim Biophys Acta (BBA) 97(2):242–250

    Article  CAS  Google Scholar 

  • Sheagren JN (1984) Staphylococcus aureus: the persistent pathogen. N Engl J Med 310(22):1437–1442

    Article  CAS  PubMed  Google Scholar 

  • Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310

    Article  CAS  PubMed  Google Scholar 

  • Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Vagenende V, Yap MG, Trout BL (2009) Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48(46):11084–11096

    Article  CAS  PubMed  Google Scholar 

  • Waitz JA (1990) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. National Committee for Clinical Laboratory Standards, Villanova

    Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein engineering design selection 8(2):127–134

    Article  CAS  Google Scholar 

  • Williamson CM, Bramley A, Lax A (1994) Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system. Appl Environ Microbiol 60(3):771–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wingfield PT (2015) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci. https://doi.org/10.1002/0471140864.ps0601s80

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang J, Li M, Yang Y, Wang B, Zheng YG (2011) Small molecule inhibitors of histone acetyltransferase Tip60. Bioorg Chem 39(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Yamamoto E, Mannen T, Nagamune T (2013) Protein refolding using chemical refolding additives. Biotechnol J 8(1):17–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Xu X, Shen L, Feng Y, Yang Z, Shen Y, Wang X (2009) Modeling of protein refolding from inclusion bodies. Acta Biochim Biophys Sin 41(12):1044–1052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Study was conducted with financial assistance from Arak University of Medical Sciences, Iran, and the authors are grateful for the university’s invaluable contribution to this study.

Funding

This study was emanated from a proposal (No: 1379) approved and supported by Arak University of Medical Sciences, Iran. This study was approved by the ethics committee of Arak University of Medical Sciences, Arak, Iran, Ethics code: 91-128-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Abtahi.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadoogh Abbasian, S., Soufian, S., Ghaznavi-Rad, E. et al. High Level Activity of Recombinant Lysostaphin After Computer Simulation and Additive-Based Refolding. Int J Pept Res Ther 25, 1241–1249 (2019). https://doi.org/10.1007/s10989-018-9769-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9769-7

Keywords

Navigation