Sea Anemones as Potential Source for Bioactive Metabolites

  • S. Thangaraj
  • S. Bragadeeswaran
  • V. Gokula


Marine organisms are novel sources for biologically active compounds which are potentially valuable materials in biomedical research. In the present investigation, the potential bioactive compounds were isolated from the sea anemone Heteractis aurora collected from Mandapam, Southeast coast India. The maximum inhibition zone was found against bacterial pathogens (Klebsiella oxytoca 7.2 ± 1.5 and Escherichia coli 8.1 ± 0.2) followed by fungal pathogens (Botrytis cinerea 5.3 ± 0.5 and Trichoderma koning 4.2 ± 1.2). The antioxidant activity was found to be 42.2 ± 1.14%, whereas hemolytic activity was recorded as 64 Hemolytic unit against chicken blood erythrocytes. The chemical characterizations of sea anemone extract were carried out by FT-IR, GC–MS and NMR (13C, 1H) spectroscopy. The FT-IR results showed the presence of phenyl ring: C–CH3 and C=C stretching. GCMS analysis revealed the presence of acetic acid-17-acetoxy-4,4,10,13-tetramethyl-7-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta (a) phenanthren-3-yl (ester) and 4[-4-diethylamino-1-methylbutylamino]-1,2 dimethoxy-6-bromonaphthalene. These identified compounds were subjected for molecular docking analysis against the target protein enoyl-acyl carrier protein reductase which revealed that acetic acid-17-acetoxy-4,4,10,13-tetramethyl-7-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta (a) phenanthren-3-yl showed better docking interaction than the commercial standard drug Tryptanthrine.


Sea anemone Heteractis aurora Hemolytic unit Klebsiella oxytoca Trichoderma koning and Tryptanthrine 



Authors are thankful to Dean & Director, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences and authority of Annamalai University for providing necessary facilities. First author sincerely acknowledged the DBT and UGC-BSR for their financial support.


Funding was provided by DBT and UGC-BSR projects.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

The Institutional Ethical Committee of Rajah Muthiah Medical College, Annamalai University, Annamalai Nagar, India (registration number 160/1999/CPCSEA/11.01.2008) approved and provided the ethical clearance for the present study.


  1. Ali MA, Shaharyar M (2007) Discovery of novel phenoxyacetic acid derivatives as anti-mycobacterial agents. Bioorg Med Chem 15:1896–1902CrossRefPubMedGoogle Scholar
  2. Alvarez C, Mancheno JM, Martinez D, Tejuca M, Pazos F, Lanio ME (2009) Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: their interaction with membranes. Toxicon 54(8):1135–1147CrossRefGoogle Scholar
  3. Anderluh G, Macek P (2002) Cytolytic peptide and protein toxins from sea anemones Anthozoa: Actiniaria. Toxicon 40:111–124CrossRefPubMedGoogle Scholar
  4. Bala SRG, Venkata RD, Rao CHB, Dhananjaya N, Kuttan R, Babu TD (1999) Isolation and structural determination of new sphingolipids and pharmacological activity of Africanene and other metabolites from Sinularia leptoclados. Chem Pharm Bull 47:1214–1220CrossRefGoogle Scholar
  5. Balamurugan E, Menon VP (2009) In vitro radical scavanging activities of Chrysaora quinquecirrha nematocyst venom. Drug Discov Ther 3(2):56–61PubMedGoogle Scholar
  6. Bates I, Fenton C, Gruber J, Lalloo D, Lara AM, Squire SB, Theobald S, Thomson R, Tolhurst R (2004) Lancet Infect Dis 4:368–375CrossRefPubMedGoogle Scholar
  7. Battison AL, Summerfield R, Patrzykat A (2008) Isolation and characterisation of two antimicrobial peptides from hemocytes of the American lobster Homarus americanus. Fish Shellfish Immunol 25:181–187CrossRefPubMedGoogle Scholar
  8. Beress L, Beress R (1971) Reinigung zweier krabbenlahmender toxins asunder sea anemone Anemonia sulcata. Kiel Meeresforsch 27:117–127Google Scholar
  9. Bragadeeswaran S, Thangaraj S, Rajak RC, Balaji D (2011) Pharmacological and biomedical properties of sea anemones Paracondactylis indicus, Paracondactylis sinensis, Heteractis magnifica and Stichodactyla haddoni from east coast of India. Asian Pac J Trop Med 4:722–726CrossRefGoogle Scholar
  10. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373CrossRefPubMedGoogle Scholar
  11. Brumfitt W, Hamilton JMT, Franklin I (1990) Antibiotic activity of natural products: 1. Propolis. Microbios 62:19–22PubMedGoogle Scholar
  12. Buckley LJ, Ikawa M, Sasner JJJ (1975) Purification of two Gonyaulax tamarensis toxins from clams Mya arenaria and the identification of STX. Toxic dinoflagellate blooms. Proc Int Conf Mass Sci Technol Found 1975:423–431Google Scholar
  13. Bursulaya B, Totrov M, Abagyan R, Brooks C (2003) J Comput Aided Mol Des 17:755–763CrossRefPubMedGoogle Scholar
  14. Chen WT, Li Y, Guo YW (2012) Terpenoids of Sinularia soft corals: chemistry and bioactivity. Acta Pharm Sinica B 2(3):227–237CrossRefGoogle Scholar
  15. Devi KN, Kumar TTA, Dhayanithi NB, Kathiresan K (2012) Isolation of pigments from sea anemones, Heteractis magnifica and Stichodactyla haddoni and their effects against aquatic and human bacterial pathogens. Asian Pac J Trop Biomed 2:S323–S328Google Scholar
  16. Duan XJ, Zhang WW, Li XM, Wang BG (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga Polysiphonia urceolata. Food Chem 95:37–43CrossRefGoogle Scholar
  17. Encarnacion DR, Franszblau SG, Tapia CA, Cedillo-Rivera R (2000) Screening of marine organisms for antimicrobial and antiprotozoal activity. Pharm Biol 38:379–384CrossRefGoogle Scholar
  18. Ewing T, Makino S, Skillman A, Kuntz I (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428CrossRefPubMedGoogle Scholar
  19. Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49CrossRefPubMedGoogle Scholar
  20. Ferlan I, Lebez D (1974) Equinatoxin, a lethal protein from Actinia equina-I. Purification and characterization. Toxicon 12:57–61CrossRefPubMedGoogle Scholar
  21. Ferlan I, Levez D (1976) Preliminary studies on the structure of equinatoxin. Bull Inst Pasteur 74:121Google Scholar
  22. Freundlich JS, Wang F, Vilcheze C, Gulten G, Langley R, Schiehser GA, Jacobus DP, Jacobs WRJ, Sacchettini JC (2009) Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. Chem Med Chem 4(2):241–248CrossRefPubMedPubMedCentralGoogle Scholar
  23. Galeano E, Martinez A (2007) Antimicrobial activity of marine sponges from Uraba Gulf, Colombian Caribbean region. J Mycol Med 17:21–24CrossRefGoogle Scholar
  24. Geffen Y, Rosenberg E (2005) Stress-induced rapid release of anti-bacterial by scleractinian corals. Mar Biol 146:931–935CrossRefGoogle Scholar
  25. Griffin SP, Bhagooli R (2004) Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol 302:201–211CrossRefGoogle Scholar
  26. Gulcin I, Beydemir S, Sat G, Kufrevioglu OI (2005) Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment 34(2):193–202CrossRefGoogle Scholar
  27. Harder T, Lau SCK, Dobretsov S, Fang TK, Qian PY (2003) A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiol Ecol 43:337–347CrossRefPubMedGoogle Scholar
  28. Hawa I, Zulaikah M, Jamaludin M, Zainal Abidin AA, Kaswandi MA, Ridzwan BH (1999) The potential of the coelomic fluid in sea cucumber as an antioxidant. Malays J Nutr 5:55–59PubMedGoogle Scholar
  29. Honma T, Shiomi K (2005) Peptide toxins in sea anemones: structural and functional aspects. Mar Biotechnol 8:1–10CrossRefGoogle Scholar
  30. Jensen PR, Harvell CD, Wirtz K, Fenical W (1996) Antimicrobial activity of extracts of Caribbean gorgonian corals. Mar Biol 125:411–419CrossRefGoogle Scholar
  31. Jinhua F, Huahua Y, Cuiping L, Ronge X, Song L, Lin W, Shengbao C, Pengcheng L (2009) Isolation and characterization of venom from nematocysts of jellyfish Rhopilema esculentum Kishinouye. Chin J Oceanol Limnol 27:869–874CrossRefGoogle Scholar
  32. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818CrossRefPubMedGoogle Scholar
  33. Kapoor M, Reddy CC, Krishnasastry MV, Surolia N, Surolia A (2004) Slow-tight-binding inhibition of enoyl-acyl carrier protein reductase from Plasmodium falciparum by triclosan. Biochem J 381:719–724CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kem WR, Parten B, Pennington MW, Price DA, Dunn BM (1989) Isolation, characterization, and amino acid sequence of a polypeptide neurotoxin occurring in the sea anemone Stichodactyla helianthus. Biochemistry 28:3483–3489CrossRefPubMedGoogle Scholar
  35. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nature reviews. Drug Discov 3(11):935–949CrossRefGoogle Scholar
  36. Koh LL, Tan TK, Chou LM, Goh NKC (2002) Antifungal properties of Singapore gorgonians: a preliminary study. J Exp Mar Biol Ecol 273:121–130CrossRefGoogle Scholar
  37. Kohno Y, Satoh H, Iguchi A, Nagai H (2009) Characterization of a new hemolytic protein toxin from the sea anemone Anthopleura asiatica. Fish Sci 75:1049–1054CrossRefGoogle Scholar
  38. Kristan K, Viero G, Dalla Serra M, Macek P, Anderluh G (2009) Molecular mechanism of pore formation by actinoporins. Toxicon 15(8):1125–1134 54)Google Scholar
  39. Kuntz ID, Meng EC, Shoichet BK (1994) Structure-based molecular design. Acc Chem Res 27(5):117–123CrossRefGoogle Scholar
  40. Lin T-W, Melgar MM, Kurth D, Swamidass SJ, Purdon J, Tseng T, Gago G, Baldi P, Gramajo H, Tsai SC (2006) Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc Natl Acad Sci 103(9):3072–3077CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ling LL, Xian J, Ali S, Geng B, Fan J, Mills DM, Arvanites AC, Orgueira H, Ashwell MA, Carmel G, Xiang Y, Moir DT (2004) Identification and characterization of inhibitors of bacterial enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 48(5):1541–1547CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mamelona J, Pelletier E, Lalancette KG, Legault J, Karboune S, Kermasha S (2007) Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber Cucumaria frondosa. Food Chem 104(3):1040–1047CrossRefGoogle Scholar
  43. Marquis CP, Baird AH, de Nys R, Holmstrom C, Koziumi N (2005) An evaluation of the antimicrobial properties of the eggs of 11 species of scleractinian corals. Coral Reefs 24:248–253CrossRefGoogle Scholar
  44. Ospina CA, Rodriguez AD (2006) Bioactive compounds from the gorgonian Briareum polyanthes. Correction of the structures of four asbestinane-type diterpenes. J Nat Prod 69(12):1721–1727CrossRefGoogle Scholar
  45. Oyaizu M (1986) Studies on products of browning reaction prepared from glucoseamine. Jpn J Nutr 44:307–314CrossRefGoogle Scholar
  46. Patton WK (1995) Three dimensional structure in solution of neurotoxin ш from the sea anemone Anemonia sulcata. Sea anemones. Academic American Encyclopedia, ed. Manoleras, N, 4. R. S. NortonGoogle Scholar
  47. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341CrossRefPubMedGoogle Scholar
  48. Rock CO, Cronan JE (1996) Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim Biophys Acta 1302:1–16CrossRefPubMedGoogle Scholar
  49. Rojas A, Torres M, Rojas J, Peregrino A, Heimer-de la Cotera EP (2002) Calcium-dependent smooth muscle excitatory effect elicited by the venom of the hydrocoral Millepora complanata. Toxicon 40:777–785CrossRefPubMedGoogle Scholar
  50. Rottini G, Gusmani L, Parovel E, Avian M, Patriarca P (1995) Purification and properties of a cytolytic toxin in venom of the jellyfish Carybdea marsupialis. Toxicon 33(3):315–326CrossRefPubMedGoogle Scholar
  51. Roussis V, Chinou IB, Tsitsimpikou C, Vagias C, Petrakis PV (2001) Antibacterial activity of volatile secondary metabolites from Caribbean soft corals of the genus Gorgonia. Flavour Frag J 16:364–366CrossRefGoogle Scholar
  52. Rozwarski DA, Grant GA, Barton DH, Jacobs WRJ, Sacchettini JC (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279(5347):98–102CrossRefPubMedGoogle Scholar
  53. Ryan KJ, Ray CG (2004) Sherris medical microbiology. McGraw Hill, New YorkGoogle Scholar
  54. Sahu SK, Kathiresan K, Singh R, Senthilraja P (2012) Molecular docking analyses of Avicennia marinaderived phytochemicals against white spot syndrome virus (WSSV) envelope protein-VP28. Bioinformation 8(18):897–900CrossRefPubMedPubMedCentralGoogle Scholar
  55. Santamaria A, Sanchez-Rodriguez J, Zugasti A, Martinez A, Galvan-Arzate S, Segura-Puertas L (2002) A venom extract from the sea anemone Bartholomea annulata produces haemolysis and lipid peroxidation in mouse erythrocytes. Toxicol 173:221–228CrossRefGoogle Scholar
  56. Shoichet BK, Kuntz ID, Bodian DL (2004) J Comp Chem 13(3):380–397CrossRefGoogle Scholar
  57. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  58. Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42:289–317CrossRefPubMedGoogle Scholar
  59. Suganthi K, Bragadeeswaran S, Sri Kumaran N, Thangaraj S, Balasubramanian T (2011) Biological and pharmacological activities of jelly fish Crambionella stuhalmanni and Chrysaora quinquecirrha. Inter. J Pharm Pharm Sci 3(2):230–236Google Scholar
  60. Tadesse M, Gulliksen B, Strom MB, Styrvold OB, Haug T (2008) Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway. J Invertebr Pathol 99:286–293CrossRefPubMedGoogle Scholar
  61. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101CrossRefPubMedPubMedCentralGoogle Scholar
  62. Thangaraj S, Bragadeeswaran S (2012) Assessment of biomedical and pharmacological activities of sea anemones Stichodactyla mertensii and Stichodactyla gigantea from Gulf of Mannar Biosphere Reserve, southeast coast of India. J Venom Anim Toxins incl Trop Dis 18(1):53–61Google Scholar
  63. Thangaraj S, Bragadeeswaran S, Suganthi K, Sri Kumaran N (2011) Antimicrobial properties of sea anemone Stichodactyla mertensii and Stichodactyla gigantea from Mandapam coast of India. Asian Pac J Trop Biomed 1:S43–S46CrossRefGoogle Scholar
  64. Torres M, Aguilar MB, Falcon A, Sanchez L, Radwan FF, Burnett JW, Heimer-de la Cotera EP, Arellano RO (2001) Electrophysiological and hemolytic activity elicited by the venom of the jellyfish Cassiopea xamachana. Toxicon 39(9):1297–1307CrossRefPubMedGoogle Scholar
  65. Vilcheze C, Wang F, Arai M, Hazbon MH, Colangeli R, Kremer L, Weisbrod TR, Alland D, Sacchettini JC, Jacobs WRJ (2006) Transfer of a point mutation in Mycobacterium tuberculosis InhA resolves the target of isoniazid. Nat Med 12(9):1027–1029CrossRefPubMedGoogle Scholar
  66. Wei LS, Musa N, Wee W, Musa N, Seng CT (2007) Antimicrobial property of 12 spices and methanolic extract of ornamental sea anemone Radianthus ritteri against Edwardsiellosis agent and other bacteria. Adv Biol Res 1(5–6):164–166Google Scholar
  67. Williams GP, Babu S, Ravikumar S, Kathiresan K, Arul Prathap S, Chinnapparaj S, Marian MP, Alikhan SL (2007) Antimicrobial activity of tissue and associated bacteria from benthic sea anemone Stichodactyla haddoni against microbial pathogens. J Environ Biol 28(4):789–793PubMedGoogle Scholar
  68. Wilsanand V, Wagh AB, Bapuji M (1999) Antibacterial activities of anthozoan corals on some marine microfoulers. Microbios 99(394):137–145PubMedGoogle Scholar
  69. World Health Organization (2010) Global tuberculosis control 2010, WHO report 2010. World Health Organization, Geneva, p. 5Google Scholar
  70. Yu H, Liu X, Xing R, Liu S, Guo Z, Wang P, Li C, Li P (2006) In vitro determination of antioxidant activity of proteins from jellyfish Rhopilema esculentum. Food Chem 95:123–130CrossRefGoogle Scholar
  71. Yu H, Li C, Li R, Xing R, Liu S, Li P (2007) Factors influencing hemolytic activity of venom from the jellyfish Rhopilema esculentum Kishinouye. Food Chem Toxicol 45:1173–1178CrossRefPubMedGoogle Scholar
  72. Zhang H, Yang Z, Shen Y, Tong L (2003) Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science 299:2064–2067CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PG & Research Department of ZoologyNational CollegeTrichyIndia
  2. 2.CAS in Marine Biology, Faculty of Marine SciencesAnnamalai UniversityParangipettaiIndia

Personalised recommendations