Skip to main content

Facile and Selective Determination of Dipeptides Using 3-Methylcatechol as a Novel Fluorogenic Reagent


Selective determination of peptides in mixtures or biological samples requires specific techniques for analysis. Herein, we report 3-methylcatechol (3-MC) as a novel fluorogenic reagent for the selective determination of dipeptides by a simple fluorescence (FL) derivatization reaction. After extensive screening of 31 different catechol analogues, 3-MC was found to generate FL with peptides. The reaction was performed at 100 °C for 10 min in the presence of borate buffer (pH 7) and sodium periodate. The resulting FL intensities were measured by spectrofluorometer at excitation wavelengths of 380 nm and emission wavelengths of 500 nm. Different reaction conditions such as concentration of sodium periodate, reaction time and pH of the borate buffer were studied to determine the optimum reaction conditions. Linearity was obtained between FL intensity and peptide concentrations from 10 to 160 µM with a lower detection limit of 10 µM (S/N = 3). Dipeptides containing Ala, Phe, Leu and Val at the N-termini generated significant FL in comparison to the reagent blank (**p < 0.005, ***p < 0.0005). The reaction is simple, rapid, selective and sensitive which can be applied for the determination of the dipeptides as biomarkers or to determine enzyme activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A et al (2004) Pept J Chromatogr B 803:3–16

    Article  CAS  Google Scholar 

  • Bajpai K, Singh VK, Sharan R, Yadav VS, Haq W et al (1998) Immunomodulating activity of analogs of noninflammatory fragment 163–171 of human interleukin-1β. Immunopharmacol 38(3):237–245

    Article  CAS  Google Scholar 

  • Chikuma T, Ogura Y, Kasamatsu M, Taguchi K, Mitsui K et al (1999) High-performance liquid chromatographic-fluorometric assay for cathepsin A (lysosomal protective protein) activity. J Chromatogr B 728(1):59–65

    Article  CAS  Google Scholar 

  • Dallas DC, Underwood MA, Zivkovic AM, German JB (2012) Digestion of protein in premature and term infants. J Nutr Disord Ther 2:1–9

    Article  Google Scholar 

  • Goldman A, Garza C, Schanler R, Goldblum R (1990) Molecular forms of lactoferrin in stool and urine from infants fed human milk. Pediatr Res 27:252–255

    Article  CAS  PubMed  Google Scholar 

  • Gozdowska M, Kulczykowska E (2004) Determination of arginine–vasotocin and isotocin in fish plasma with solid-phase extraction and fluorescence derivatization followed by high-performance liquid chromatography. J Chromatogr B 807(2):229–233

    Article  CAS  Google Scholar 

  • Ishida J, Kai M, Ohkura Y (1986) High-performance liquid chromatography of tyrosine containing peptides by pre-column derivatization involving formylation followed by fluorescence reaction with 1,2-diamino-4,5-dimethoxybenzene [4,5-dimethoxy-o-phenylenediamine]. J Chromatogr 356:171–177

    Article  CAS  PubMed  Google Scholar 

  • Kabashima T, Yu Z, Chang T, Nakagawa Y, Okumura K et al (2008) Selective fluorescence reaction for peptides and chromatographic analysis. Peptides 29(3):356–363

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Ohkura Y (1986) Selective determination of N-terminal tyrosine containing peptides by a novel fluorescence reaction with borate, hydroxylamine and cobalt(II). Anal Chim Acta 182:177–183

    Article  CAS  Google Scholar 

  • Kai M, Miyuzaki T, Sakomoto Y, Ohkura Y (1985) Use of benzoin as pre-column fluorescence derivatization reagent for the high-performance liquid chromatography of angiotensins. J Chromatogr 322:473–477

    Article  CAS  PubMed  Google Scholar 

  • Khan RS, Yu C, Kastin AJ, He Y, Ehrensing RH, Hsuchou H, Stone KP, Pan W (2010) Brain activation by peptide Pro-Leu-Gly-NH2 (MIF-1). Int J.

    Article  Google Scholar 

  • Kobb KA, Novotny MV (1992) Selective determination of arginine-containing and tyrosine-containing peptides using capillary electrophoresis and laser-induced fluorescence detection. Anal Biochem 200(1):149–155

    Article  Google Scholar 

  • Kojima E, Ohba Y, Kai M, Ohkura Y (1993) Phenylglyoxal and glyoxal as fluorogenic reagents selective for N-terminal tryptophan-containing peptides. Anal Chim Acta 280:157–162

    Article  CAS  Google Scholar 

  • Ling BL, Dewaele C, Baeyens WRG (1991) Micro liquid chromatography with fluorescence detection of thiols and disulfides. J Chromatogr 553:433–439

    Article  CAS  Google Scholar 

  • Morihara K, Tsuzuki H (1970) Thermolysin: kinetic study with oligopeptides. Eur J Biochem 15:374–380

    Article  CAS  PubMed  Google Scholar 

  • Myers RD (1994) Neuroactive peptides: unique phases in research on mammalian brain over three decades. Peptides 15(2):367–381

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Zimmerman CL, Pisano JJ (1979) Analysis of histidine-containing dipeptides, polyamines, and related amino acids by high-performance liquid chromatography: application to guinea pig brain. Anal Biochem 93:423–429

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Velasquez R, Dies-Marques ML, Ruiz-Torres MP, Gonzalez-Rubio M, Rodriguez-Puyol M et al (2003) Arg-Gly-Asp-Ser (RGDS) peptide stimulates transforming growth factor 1 transcription and secretion through integrin activation. FASEB J 17(11):1529–1531

    Article  CAS  Google Scholar 

  • Puche JE, Castilla-Cortázar I (2012) Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 10:224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayan CA, Gregory P, Scheer J, Moura DS (2002) Polypeptide hormones. Plant Cell 14(Suppl):s251–s264

    Article  CAS  Google Scholar 

  • Roberti ML, Ricottini L, Capponi A, Sclauzero E, Vicenti P et al (2014) Immunomodulating treatment with low dose interleukin-4, interleukin-10 and interleukin-11 in psoriasis vulgaris. J Bio Regul Homeost Agents 28(1):133–139

    CAS  Google Scholar 

  • Sforza S, Cavatorta V, Lambertini F, Galaverna G, Dossena A et al (2012) Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano–Reggiano cheese from curd to 24 months of aging. J Dairy Sci 95:3514–3526

    Article  CAS  PubMed  Google Scholar 

  • Theodorescu D, Schiffer E, Bauer HW, Douwes F, Eichhorn F et al (2008) Discovery and validation of urinary biomarkers for prostate cancer. Proteom Clin Appl 2:556–570

    Article  CAS  Google Scholar 

  • Toyo’oka T, Ishibashi M, Terao T (1994) Sensitive determination of N-terminal prolyl peptides by high-performance liquid chromatography with laser-induced fluorescence detection. J Chromatogr A 661(1):105–112

    Article  PubMed  Google Scholar 

  • Ueno T, Tanaka M, Matsui T, Matsumoto K (2005) Determination of antihypertensive small peptides, Val-Tyr and Ile-Val-Tyr by fluorometric high-performance liquid chromatography combined with a double heart-cut column-switching technique. Anal Sci 21:997–1000

    Article  CAS  PubMed  Google Scholar 

  • Voelter W, Zech K (1975) High-performance liquid chromatographic analysis of amino acids and peptide-hormone hydrolysates in the picomole range. J Chromatogr A 112:643–649

    Article  CAS  Google Scholar 

  • Weidman SW, Kaiser ET (1966) The mechanism of the periodate oxidation of aromatic systems. iii. a kinetic study of the periodate oxidation of catechol. J Am Chem Soc 88(24):5820–5827

    Article  CAS  Google Scholar 

  • Yang J, Cohen Stuart MA, Kamperman M (2014) Jack of all trades: versatile catechol crosslinking mechanisms. Chem Soc Rev 43:8271–8298

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Saggiomo V, Velders AH, Cohen Stuart MA, Kamperman M (2016) Reaction pathways in catechol/primary amine mixtures: a window on crosslinking chemistry. PLoS ONE 11(12):1–17

    Google Scholar 

  • Yasmin H, Shibata T, Rahman MS, Kabashima T, Kai M (2012) Selective and sensitive determination of peptides using 3,4-dihydroxyphenylacetic acid as a fluorogenic reagent. Anal Chim Acta 721:162–166

    Article  CAS  PubMed  Google Scholar 

  • Yasmin H, Rahman MS, Shibata T, Kabashima T, Kai M (2014) Novel fluorometric method for the selective determination of Pro-Gly and Pro-Gly-Pro. Int J Pept Res Ther 20:441–446

    Article  CAS  Google Scholar 

  • Yasmin H, Rahman MS, Shibata T, Kabashima T, Kai M (2015) Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol. Chem Pap 69(4):504–509

    Article  CAS  Google Scholar 

  • Zurbig P, Dihazi H, Metzger J, Thongboonkerd V, Vlahou A (2011) Urine proteomics in kidney and urogenital diseases: moving towards clinical applications. Proteom Clin Appl 5:256–268

    Article  CAS  Google Scholar 

Download references


This work was partially supported by Grants-in-aid for Scientific Research form the Ministry of Education, Culture, Sports and Technology of Japan.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hasina Yasmin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary Figure 1 Concentration range of AG used to determine the limit of detection (LOD) and the limit of linearity (LOL). Error bars represents standard uncertainty, n = 3 (PPTX 36 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yasmin, H., Rahman, M.S. & Shibata, T. Facile and Selective Determination of Dipeptides Using 3-Methylcatechol as a Novel Fluorogenic Reagent. Int J Pept Res Ther 25, 583–589 (2019).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Peptides
  • 3-Methylcatechol
  • Fluorescence
  • Selectivity