Skip to main content
Log in

The Protective Effect of Humanin Derivative AGA(C8R)-HNG17 Against Acetaminophen-Induced Liver Injury in Mice

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Until recently, necrotic cells death was considered an uncontrolled process. However, evidence was recently presented that necrosis is a regulated process associated with many clinical conditions. Humanin and its derivatives are peptides known for their anti-apoptotic activity against Alzheimer’s disease. Recently, the humanin-derivative AGA(C8R)-HNG17 (PAGASRLLLLTGEIDLP) was found to have protective effect against necrosis in traumatic brain injury model in mice. We have demonstrated now the protective effect of AGA(C8R)-HNG17 against necrosis in a dose dependent manner in HepG2 cells in vitro, where necrosis was induced in a glucose-free medium by chemohypoxia. Moreover, it was further demonstrated in a model of acetaminophen-induced liver injury in C57BL/6J male mice, in vivo. Intraperitoneal administration of the peptide at 10 and 30 mg/kg significantly prevented the increase in two plasma markers for necrosis, alanine aminotransferase (ALT, EC 2.6.1.2) and aspartate aminotransferase (AST, EC 2.6.1.1). Mitochondrial dysfunction is known to be the main cause of hepatic failure. Hence, the protection from liver injury by AGA(C8R)-HNG17, which we have recently found to target the mitochondria, may be mediated by mitochondrial regulation. Currently, there is no effective treatment for liver diseases, in which necrosis is involved. These findings may provide a new anti-necrotic strategy against APAP-induced liver injury and other liver diseases associated with necrosis using AGA(C8R)-HNG17 as a therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeda-Valdes P, Altamirano-Barrera A, Uribe M, Mendez-Sanchez N (2016) Metabolic features of alcoholic liver disease. Rev Recent Clin Trials 11:220–226

    Article  CAS  PubMed  Google Scholar 

  • Chandok N, Watt K (2010) Pain management in the cirrhotic patient: the clinical challenge. Mayo Clin Proc 85:451–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen A, Lerner-Yardeni J, Meridor D, Parola AH, Kasher R et al (2015) Humanin-derivatives inhibit necrotic cell death in neurons. Mol Med 21:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Yeshurun A, Trembovler V, Alexandrovich A, Ryberg E, Greasley PJ et al (2011) N-arachidonoyl-L-serine is neuroprotective after traumatic brain injury by reducing apoptosis. J Cereb Blood Flow Metab 31:1768–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ et al (2005) Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther 315:879–887

    Article  CAS  PubMed  Google Scholar 

  • Du K, Williams CD, McGill MR, Xie Y, Farhood A et al (2013) The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation. Toxicol Appl Pharmacol 273:484–491

    Article  CAS  PubMed  Google Scholar 

  • Feldman Z, Gurevitch B, Artru AA, Oppenheim A, Shohami E et al (1996) Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg 85:131–137

    Article  CAS  PubMed  Google Scholar 

  • Giboney PT (2005) Mildly elevated liver transaminase levels in the asymptomatic patient. Am Fam Phys 71:1105–1110

    Google Scholar 

  • Graham GG, Scott KF, Day RO (2005) Tolerability of paracetamol. Drug Saf 28:227–240

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi ME, Malhi H, Mott JL, Gores GJ (2013) Apoptosis and necrosis in the liver. Compr Physiol 3:977–1010

    PubMed  Google Scholar 

  • Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H (2002) Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci 67:322–328

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S et al (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456–461

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Habata Y, Hosoya M, Nishi K, Fuji R et al (2004) N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem Biophys Res Commun 324:255–261

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M et al (2001a) Mechanisms of neuroprotection by a novel rescue factor Humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 283:460–468

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M et al (2001b) Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults. J Neurosci 21:9235–9245

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H et al (2001c) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA 98:6336–6341

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Kurita M, Aiso S, Nishimoto I, Matsuoka M (2009) Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp-130. Mol Biol Cell 20:2864–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell BA, Siler SQ, Shoda LKM, Yang Y, Woodhead JL, Watkins PB (2014) A mechanistic model of drug-induced liver injury aids the interpretation of elevated liver transaminase levels in a phase I clinical trial. CPT 3:1–8

    Google Scholar 

  • Jaeschke H, McGill MR, Ramachandran A (2012) Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44:88–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A (2013) Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 55:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Liu T, Wang W-X, Xu J-H, Yang P-B et al (2010) Protective effects of [Gly14]-humanin on β-amyloid-induced PC12 cell death by preventing mitochondrial dysfunction. Neurochem Int 56:417–423

    Article  CAS  PubMed  Google Scholar 

  • Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195–202

    CAS  PubMed  Google Scholar 

  • Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320

    Article  CAS  PubMed  Google Scholar 

  • Latchoumycandane C, Goh CW, Ong MMK, Boelsterli UA (2007) Mitochondrial protection by the JNK inhibitor leflunomide rescues mice from acetaminophen-induced liver injury. Hepatology (Hoboken) 45:412–421

    Article  CAS  Google Scholar 

  • Lavanchy D (2009) The global burden of hepatitis C. Liver Int 29:74–81

    Article  PubMed  Google Scholar 

  • Lawson JA, Fisher MA, Simmons CA, Farhood A, Jaeschke H (1999) Inhibition of fas receptor (CD95)-induced hepatic caspase activation and apoptosis by acetaminophen in mice. Toxicol Appl Pharmacol 156:179–186

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Yen K, Cohen P (2013) Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab 24:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Prabhakaran K, Mills EM, Borowitz JL, Isom GE (2005) Enhancement of cyanide-induced mitochondrial dysfunction and cortical cell necrosis by uncoupling protein-2. Toxicol Sci 86:116–124

    Article  CAS  PubMed  Google Scholar 

  • Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver:a tale of two deaths? Hepatology 43:S31-44

    Article  CAS  PubMed  Google Scholar 

  • Masubuchi Y, Suda C, Horie T (2005) Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 42:110–116

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M, Hashimoto Y (2010) Humanin and the receptors for humanin. Mol Neurobiol 41:22–28

    Article  CAS  PubMed  Google Scholar 

  • Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ et al (2009) Humanin: a novel central regulator of peripheral insulin action. PLoS ONE 4:e6334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niikura T, Chiba T, Aiso S, Matsuoka M, Nishimoto I (2004) Humanin: after the discovery. Mol Neurobiol 30:327–340

    Article  CAS  PubMed  Google Scholar 

  • Parola AH, Nathan I, Kasher R, Lerner-Yardeni J, Cohen A (2011) Methods for inhibiting necrosis using humanin derivatives. PCT international applications WO2011104708

  • Prabhakaran K, Li L, Borowitz JL, Isom GE (2002) Cyanide induces different modes of death in cortical and mesencephalon cells. J Pharmacol Exp Ther 303:510–519

    Article  CAS  PubMed  Google Scholar 

  • Rosser BG, Gores GJ (1995) Liver cell necrosis: cellular mechanisms and clinical implications. Gastroenterology 108:252–275

    Article  CAS  PubMed  Google Scholar 

  • Sandilands EA, Bateman DN (2009) Adverse reactions associated with acetylcysteine. Clin Toxicol 47:81–88

    Article  CAS  Google Scholar 

  • Tomishima Y, Ishitsuka Y, Matsunaga N, Nagatome M, Furusho H et al (2013) Ozagrel hydrochloride, a selective thromboxane A2 synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice. BMC Gastroenterol 13:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A, Jaeschke H (2014) Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol 275:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Zou X, Koskinen M-L, Tenhunen J (2012) Ethyl pyruvate reduces liver injury at early phase but impairs regeneration at late phase in acetaminophen overdose. Crit Care 16:R9

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin H, Cheng L, Holt M, Hail N Jr, MacLaren R, Ju C (2010) Lactoferrin protects against acetaminophen-induced liver injury in mice. Hepatology (Hoboken) 51:1007–1016

    CAS  Google Scholar 

  • Ying G, Iribarren P, Zhou Y, Gong W, Zhang N et al (2004) Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 172:7078–7085

    Article  CAS  PubMed  Google Scholar 

  • Zelig U, Kapelushnik J, Moreh R, Mordechai S, Nathan I (2009) Diagnosis of cell death by means of infrared spectroscopy. Biophys J 97:2107–21014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai D, Luciano F, Zhu X, Guo B, Satterthwait AC et al (2005) Humanin binds and nullifies Bid activity by blocking its activation of Bax and Bak. J Biol Chem 280:15815–15824

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gavin T, Geohagen BC, Liu Q, Downey KJ, LoPachin RM (2013) Protective properties of 2-acetylcyclopentanone in a mouse model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 346:259–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Chen L, Gao X, Luo B, Chen J (2012) Moderate traumatic brain injury triggers rapid necrotic death of immature neurons in the hippocampus. J Neuropathol Exp Neurol 71:348–359

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Mark M Karpasas and Lina Saveliev from the Analytical Research Services Unit, Ben Gurion University of the Negev, for mass spectrometric analysis of the peptide, and Dr. Nurit Hadad for her help in the in vivo experiments. The financial support of the Kamin Program from the Chief Scientist of the Ministry of Economy of Israel (to AH Parola, I Nathan, and R Kasher), the James-Frank Center for Laser-Matter Interaction (to AH Parola), the Edmund Safra Foundation for Functional Bio-polymer, the New-York University Shanghai (NYUSH) research grant (to AH Parola), the Lyonel Israels’ Chair Fund (I Nathan), and the Pratt postdoctoral fellowships (to Meridor D. and Khalfin B.) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roni Kasher, Ilana Nathan or Abraham H. Parola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All animal procedures and care techniques were approved by the Ben-Gurion University of the Negev Committee for the Ethical Care and Use of Animals in Research.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meridor, D., Cohen, A., Khalfin, B. et al. The Protective Effect of Humanin Derivative AGA(C8R)-HNG17 Against Acetaminophen-Induced Liver Injury in Mice. Int J Pept Res Ther 25, 565–571 (2019). https://doi.org/10.1007/s10989-018-9700-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9700-2

Keywords

Navigation