Effects of Single Amino Acid Substitutions on Aggregation and Cytotoxicity Properties of Amyloid β Peptide

  • Ana Esther Estrada-Rodríguez
  • Donato Valdez-Pérez
  • Jaime Ruiz-García
  • Alejandro Treviño-Garza
  • Ana Miriam Gómez-Martínez
  • Herminia Guadalupe Martínez-Rodríguez
  • Ana María Rivas-Estilla
  • Román Vidaltamayo
  • Viviana Zomosa-Signoret


Alzheimer’s disease is the main cause of dementia and the deposition of amyloid beta peptide (Aβ) in the brain is the key event in its progression. Soluble oligomers of Aβ are proposed to be the primary neurotoxic agents, and prevention of Aβ self-assembly has been proposed as a therapeutic approach. To analyze the role of key amino acids for Aβ aggregation and cytotoxicity, we introduced the three single mutations K28A, A30W or M35C in three length variants of Aβ: 25–35, 1–40, 1–42, 1–40. We assessed amyloid formation through atomic force microscopy and thioflavine fluorescence and tested the amyloid seeding effects of the mutant peptides in co-incubation assays. We also correlated changes in aggregation properties with cytotoxicity and reactive oxygen species production. Atomic force microscopy imaging demonstrated that the formation of amyloid fibrils was more dependent on the primary sequence of the peptides rather than on their length. We observe decreased formation of amyloid-like structures in all the three mutant Aβ (25–35) peptides, but these short peptide mutants remained cytotoxic. A30W and M35C mutants of the longer peptides decreased reactive oxygen species production and this effect was correlated with lower levels of cytotoxicity, but not with aggregation properties. Taken together, our results show that cytotoxicity of the Aβ peptide variants is more dependent on their primary amino acid sequence than on their capability to aggregate into amyloid-like structures.


Alzheimer’s disease Amyloid β peptide Aggregation 



This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT) of Mexico [grant numbers: CB-2014-22006 to V.C.Zomosa-Signoret, CB-2013-220342 to R. Vidaltamayo and FC-2015-341 to J. Ruiz-García]. Ana Estrada was a recipient of a Doctoral fellowship from CONACYT.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflict of interest.


  1. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. CrossRefPubMedGoogle Scholar
  2. Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52:1–18 CrossRefPubMedGoogle Scholar
  3. Bennett RE et al (2017) Enhanced tau aggregation in the presence of amyloid β. Am J Pathol 187:1601–1612. CrossRefPubMedGoogle Scholar
  4. Biasini M et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252-258. CrossRefGoogle Scholar
  5. Bobo C et al (2017) Synthetic toxic Aβ1–42 oligomers can assemble in different morphologies. Biochim Biophys Acta 1861:1168–1176. CrossRefPubMedGoogle Scholar
  6. Cerasoli E, Ryadnov MG, Austen BM (2015) The elusive nature and diagnostics of misfolded Aβ oligomers. Front Chem 3:17. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chalifour RJ et al (2003) Stereoselective interactions of peptide inhibitors with the beta-amyloid peptide. J Biol Chem 278:34874–34881. CrossRefPubMedGoogle Scholar
  8. Cohen RM et al (2013) A transgenic alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric Aβ, and frank neuronal loss. J Neurosci 33:6245CrossRefPubMedPubMedCentralGoogle Scholar
  9. Colvin MT et al (2016) Atomic resolution structure of monomorphic abeta42 amyloid fibrils. J Am Chem Soc 138:9663–9674. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Coskuner O, Uversky VN (2017) Tyrosine regulates β-sheet structure formation in amyloid-β42: a new clustering algorithm for disordered proteins. J Chem Inf Model 57:1342–1358. CrossRefPubMedGoogle Scholar
  11. Cruz M, Tusell JM, Grillo-Bosch D, Albericio F, Serratosa J, Rabanal F, Giralt E (2004) Inhibition of β-amyloid toxicity by short peptides containing N-methyl amino acids. J Pept Res 63:324–328. CrossRefPubMedGoogle Scholar
  12. Dai XL, Sun YX, Jiang ZF (2007) Attenuated cytotoxicity but enhanced betafibril of a mutant amyloid beta-peptide with a methionine to cysteine substitution. FEBS Lett 581:1269–1274. CrossRefPubMedGoogle Scholar
  13. Dos Santos Picanço LC et al. (2016) Alzheimer’s disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr Med Chem. PubMedGoogle Scholar
  14. Finder VH, Glockshuber R (2007) Amyloid-β aggregation. Neurodegener Dis 4:13–27CrossRefPubMedGoogle Scholar
  15. Fu L et al (2017) Comparison of neurotoxicity of different aggregated forms of Aβ40, Aβ42 and Aβ43 in cell cultures. J Pept Sci 23:245–251. CrossRefPubMedGoogle Scholar
  16. Gandy S et al (2010) Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-β oligomers. Ann Neurol 68:220–230. PubMedPubMedCentralGoogle Scholar
  17. Ghosh A, Pradhan N, Bera S, Datta A, Krishnamoorthy J, Jana NR, Bhunia A (2017) Inhibition and degradation of amyloid beta (Aβ40) fibrillation by designed small peptide: a combined spectroscopy, microscopy, and cell toxicity study. ACS Chem Neurosci 8:718–722. CrossRefPubMedGoogle Scholar
  18. Goyal D, Shuaib S, Mann S, Goyal B (2017) Rationally designed peptides and peptidomimetics as Inhibitors of amyloid-beta (Abeta) aggregation: potential therapeutics of alzheimer’s disease. ACS Comb Sci 19:55–80. CrossRefPubMedGoogle Scholar
  19. Gremer L et al (2017) Fibril structure of amyloid-beta(1–42) by cryo-electron. microscopy Science 358:116–119. PubMedGoogle Scholar
  20. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. CrossRefPubMedGoogle Scholar
  21. Gurry T, Stultz CM (2014) Mechanism of amyloid-β fibril elongation. Biochemistry 53:6981–6991. CrossRefPubMedGoogle Scholar
  22. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis Science 256:184CrossRefPubMedGoogle Scholar
  23. Herrup K (2010) Reimagining alzheimer’s disease: an age-based hypothesis. J Neurosci 30:16755CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jarrett JT, Lansbury PT (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058CrossRefPubMedGoogle Scholar
  25. Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA (2010) Subcellular and metabolic examination of amyloid-β peptides in alzheimer disease pathogenesis: evidence for aβ25–35. Exp Neurol 221:26–37. CrossRefPubMedGoogle Scholar
  26. Kumar S, Walter J (2011) Phosphorylation of amyloid beta (Aβ) peptides: a trigger for formation of toxic aggregates in Alzheimer’s disease. Aging 3:803–812CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kumar S, Paul A, Kalita S, Ghosh AK, Mandal B, Mondal AC (2017) Protective effects of β-sheet breaker α/β-hybrid peptide against amyloid β-induced neuronal apoptosis in vitro. Chem Biol Drug Des 89:888–900. CrossRefPubMedGoogle Scholar
  28. Kuo Y-M et al (2001) Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem 276:12991–12998CrossRefPubMedGoogle Scholar
  29. LaFerla FM (2010) Pathways linking Aβ and tau pathologies. Biochem Soc Trans 38:993CrossRefPubMedGoogle Scholar
  30. Matharu B, El-Agnaf O, Razvi A, Austen BM (2010) Development of retro-inverso peptides as anti-aggregation drugs for β-amyloid in Alzheimer’s disease. Peptides 31:1866–1872. CrossRefPubMedGoogle Scholar
  31. Murakami K, Masuda Y, Shirasawa T, Shimizu T, Irie K (2010) The turn formation at positions 22 and 23 in the 42-mer amyloid β peptide: the emerging role in the pathogenesis of Alzheimer’s disease. Geriatr Gerontol Int 10:S169-S179. CrossRefGoogle Scholar
  32. Nguyen P, Derreumaux P (2014) Understanding amyloid fibril nucleation and Aβ oligomer/drug interactions from computer simulations. Acc Chem Res 47:603–611. CrossRefPubMedGoogle Scholar
  33. Ni C-L, Shi H-P, Yu H-M, Chang Y-C, Chen Y-R (2011) Folding stability of amyloid-β 40 monomer is an important determinant of the nucleation kinetics in fibrillization. FASEB J 25:1390–1401CrossRefPubMedGoogle Scholar
  34. Petkova AT, Yau W-M, Tycko R (2006) Experimental constraints on quaternary structure in alzheimer’s β-amyloid Fibrils. Biochemistry 45:498–512. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676PubMedGoogle Scholar
  36. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. New Engl J Med 362:329–344. CrossRefPubMedGoogle Scholar
  37. Rygiel K (2016) Novel strategies for Alzheimer’s disease treatment: an overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol 48:629–636. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sebastiao M, Quittot N, Bourgault S (2017) Thioflavin T fluorescence to analyse amyloid formation kinetics: Measurement frequency as a factor explaining irreproducibility. Anal Biochem 532:83–86. CrossRefPubMedGoogle Scholar
  39. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741CrossRefPubMedGoogle Scholar
  40. Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sinha S, Lopes DHJ, Bitan G (2012) A key role for lysine residues in amyloid β-protein folding, assembly, and toxicity. ACS Chem Neurosci 3:473–481. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stadtman ER (2004) Cyclic oxidation and reduction of methionine residues of proteins in antioxidant defense and cellular regulation. Arch Biochem Biophys 423:2–5CrossRefPubMedGoogle Scholar
  43. Straub JE, Thirumalai D (2010) Principles governing oligomer formation in amyloidogenic peptides. Curr Opin Struct Biol 20:187–195. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Streets A, Sourigues Y, Kopito R, Melki R, R Quake R S (2013) Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics. PLoS ONE. PubMedPubMedCentralGoogle Scholar
  45. Tjernberg LO et al (1996) Arrest of -amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548CrossRefPubMedGoogle Scholar
  46. Walter J, Kaether C, Steiner H, Haass C (2001) The cell biology of Alzheimer’s disease: uncovering the secrets of secretases. Curr Opin Neurobiol 11:585–590. CrossRefPubMedGoogle Scholar
  47. Walti MA et al (2016) Atomic-resolution structure of a disease-relevant Abeta(1–42) amyloid fibril. Proc Natl Acad Sci USA 113:E4976–E4984. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yang T, Li S, Xu H, Walsh DM, Selkoe DJ (2017) Large soluble oligomers of amyloid β-protein from alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci 37:152–163. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yoshiike Y, Akagi T, Takashima A (2007) Surface structure of amyloid-β fibrils contributes to Cytotoxicity. Biochemistry 46:9805–9812. CrossRefPubMedGoogle Scholar
  50. Yoshiike Y, Minai R, Matsuo Y, Chen Y-R, Kimura T, Takashima A (2008) Amyloid oligomer conformation in a group of natively folded proteins. PLoS ONE 3:e3235. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ana Esther Estrada-Rodríguez
    • 1
  • Donato Valdez-Pérez
    • 2
  • Jaime Ruiz-García
    • 3
  • Alejandro Treviño-Garza
    • 1
  • Ana Miriam Gómez-Martínez
    • 1
  • Herminia Guadalupe Martínez-Rodríguez
    • 1
  • Ana María Rivas-Estilla
    • 1
  • Román Vidaltamayo
    • 4
  • Viviana Zomosa-Signoret
    • 1
  1. 1.Departamento de Bioquímica y Medicina Molecular, Facultad de MedicinaUniversidad Autónoma de Nuevo LeónMonterreyMexico
  2. 2.Instituto Politécnico NacionalUnidad Profesional Adolfo López MateosCiudad de MéxicoMexico
  3. 3.Biological Physics Laboratory, Institute of PhysicsUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  4. 4.Departamento de Ciencias BásicasUniversidad de MonterreyGarza GarcíaMexico

Personalised recommendations