Skip to main content

Inhibiting Phosphorylation of Tau (τ) Proteins at Ser262 Using Peptide-Based R1 Domain Mimetics

Abstract

The microtubule-associated protein tau (τ) is a phosphoprotein that is crucial for regulating microtubule dynamics. Tau is highly enriched in neurons, where it functions by binding tubulin and stabilizing axonal microtubules. Phosphorylation of tau within its microtubule-binding repeat (R) domains significantly reduces its affinity for tubulin, leading to a loss in microtubule stability. In neurons, dysregulated kinase activity often results in the formation of hyper-phosphorylated tau isoforms that remain permanently detached from microtubules. If left untreated, hyper-phosphorylated tau can aggregate into insoluble, prion-like oligomers that contribute to the pathogenesis of neurodegenerative disease. Consequently, there is considerable interest in developing inhibitors that reduce levels of hyper-phosphorylated tau in neurons. In this study, we have generated a synthetic peptide mimetic (tR1) of the tau R1 domain as an inhibitor of microtubule-affinity regulating kinase 2 (MARK2). In vitro assays showed that tR1 inhibits the MARK2-mediated phosphorylation of tau within its R1 domain at Ser262, a residue critical for favorable tau-tubulin interactions. We also demonstrate that tR1 peptides are > 90% stable up to 24 h in neurobasal medium and RPMI media supplemented with human serum. Uptake experiments in cultured rat primary cortical neurons indicate that tR1 is internalized through an energy-dependent mechanism and can be delivered to the cytoplasm when co-treated with bafilomycin A1 or chloroquine. Furthermore, we show tR1 inhibits phosphorylation of endogenous tau at Ser262 in cultured neurons following activation of intracellular kinases. This inhibitory effect was selective for kinases that phosphorylate tau at Ser262, as tR1 did not inhibit tau phosphorylation at Thr231. Collectively, these results establish tR1 as a highly-stable, peptide-based kinase inhibitor that reduces the level of phosphorylated tau proteins in neurons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alonso AD, Di Clerico J, Li B, Corbo CP, Alaniz ME, Grundke-Iqbal I, Iqbal K (2010) Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem 285:30851–30860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban CL, Banchio C, Ceccarelli EA (2017) TAT-mediated transduction of bacterial redox proteins generates a cytoprotective effect on neuronal cells. PLoS ONE 12:e0184617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Adel A C (2014) Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 30:346–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biernat J, Wu YZ, Timm T, Zheng-Fischhofer Q, Mandelkow E, Meijer L, Mandelkow EM (2002) Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 13:4013–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britto PJ, Knipling L, McPhie P, Wolff J (2005) Thiol-disulphide interchange in tubulin: kinetics and the effect on polymerization. Biochem J 389:549–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron NJ, Quenneville SP, Tremblay JP (2004) Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins. Biochem Biophys Res Commun 319:12–20

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, Chow AK, Weiser DA, Belcastro LT, Winter C, Bresler SC, Vigny M, Mazot P, Asgharzadeh S, Seeger RC, Zhao H, Guo R, Christensen JG, Orange JS, Pawel BR, Lemmon MA, Mosse YP (2012) Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 31:4859–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung ZH, Ip NY (2012) Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 22:169–175

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Johnson GV (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem 88:349–358

    Article  CAS  PubMed  Google Scholar 

  • Colvin RA, Lai B, Holmes WR, Lee D (2015) Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics. Metallomics 7:1111–1123

    Article  CAS  PubMed  Google Scholar 

  • Csokova N, Skrabana R, Liebig HD, Mederlyova A, Kontsek P, Novak M (2004) Rapid purification of truncated tau proteins: model approach to purification of functionally active fragments of disordered proteins, implication for neurodegenerative diseases. Protein Expr Purif 35:366–372

    Article  CAS  PubMed  Google Scholar 

  • Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204

    Article  PubMed  Google Scholar 

  • Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89:297–308

    Article  CAS  PubMed  Google Scholar 

  • Eldar-Finkelman H, Eisenstein M (2009) Peptide inhibitors targeting protein kinases. Curr Pharm Des 15:2463–2470

    Article  CAS  PubMed  Google Scholar 

  • Elkins JM, Fedele V, Szklarz M, Abdul Azeez KR, Salah E, Mikolajczyk J, Romanov S, Sepetov N, Huang XP, Roth BL, Al Haj Zen A, Fourches D, Muratov E, Tropsha A, Morris J, Teicher BA, Kunkel M, Polley E, Lackey KE, Atkinson FL, Overington JP, Bamborough P, Muller S, Price DJ, Willson TM, Drewry DH, Knapp S, Zuercher WJ (2016) Comprehensive characterization of the published kinase inhibitor set. Nat Biotechnol 34:95–103

    Article  CAS  PubMed  Google Scholar 

  • Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F (2014) Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 57:78–94

    Article  CAS  PubMed  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  • Gallion SL, Qian D (2005) Chemical genetic approaches to kinase drug discovery. Curr Opin Drug Discov Dev 8:638–645

    CAS  Google Scholar 

  • Garuti L, Roberti M, Bottegoni G (2010) Non-ATP competitive protein kinase inhibitors. Curr Med Chem 17:2804–2821

    Article  CAS  PubMed  Google Scholar 

  • Gibbs KL, Greensmith L, Schiavo G (2015) Regulation of axonal transport by protein kinases. Trends Biochem Sci 40:597–610

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    Article  CAS  PubMed  Google Scholar 

  • Gu GJ, Lund H, Wu D, Blokzijl A, Classon C, von Euler G, Landegren U, Sunnemark D, Kamali-Moghaddam M (2013a) Role of individual MARK isoforms in phosphorylation of tau at Ser262 in Alzheimer’s disease. Neuromol Med 15:458–469

    Article  CAS  Google Scholar 

  • Gu GJ, Wu D, Lund H, Sunnemark D, Kvist AJ, Milner R, Eckersley S, Nilsson LN, Agerman K, Landegren U, Kamali-Moghaddam M (2013b) Elevated MARK2-dependent phosphorylation of Tau in Alzheimer’s disease. J Alzheimers Dis 33:699–713

    Article  CAS  PubMed  Google Scholar 

  • Gundry C, Marco S, Rainero E, Miller B, Dornier E, Mitchell L, Caswell PT, Campbell AD, Hogeweg A, Sansom OJ, Morton JP, Norman JC (2017) Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nat Commun 8:14646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han KC, Kim SY, Yang EG (2012) Recent advances in designing substrate-competitive protein kinase inhibitors. Curr Pharm Des 18:2875–2882

    Article  CAS  PubMed  Google Scholar 

  • Hughes JN, Wong CK, Lau KX, Rathjen PD, Rathjen J (2014) Regulation of pluripotent cell differentiation by a small molecule, staurosporine. Differentiation 87:101–110

    Article  CAS  PubMed  Google Scholar 

  • Hurov J, Piwnica-Worms H (2007) The Par-1/MARK family of protein kinases: from polarity to metabolism. Cell Cycle 6:1966–1969

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Hiradate Y, Shirakata Y, Kanai K, Kosaka K, Gotoh A, Fukuda Y, Nakai Y, Uchida T, Sato E, Tanemura K (2014) Site-specific phosphorylation of tau protein is associated with deacetylation of microtubules in mouse spermatogenic cells during meiosis. FEBS Lett 588:2003–2008

    Article  CAS  PubMed  Google Scholar 

  • Jenkins SM, Johnson GV (1999) Modulation of tau phosphorylation within its microtubule-binding domain by cellular thiols. J Neurochem 73:1843–1850

    CAS  PubMed  Google Scholar 

  • Jenkins SM, Johnson GV (2000) Microtubule/MAP-affinity regulating kinase (MARK) is activated by phenylarsine oxide in situ and phosphorylates tau within its microtubule-binding domain. J Neurochem 74:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Aspmo SI (2008) Serum stability of peptides. Methods Mol Biol 494:177–186

    Article  CAS  PubMed  Google Scholar 

  • Johnson LN (2009) The regulation of protein phosphorylation. Biochem Soc Trans 37:627–641

    Article  CAS  PubMed  Google Scholar 

  • Kaidanovich-Beilin O, Eldar-Finkelman H (2006) Peptides targeting protein kinases: strategies and implications. Physiology (Bethesda) 21:411–418

    CAS  Google Scholar 

  • Kandimalla KK, Scott OG, Fulzele S, Davidson MW, Poduslo JF (2009) Mechanism of neuronal versus endothelial cell uptake of Alzheimer’s disease amyloid β protein. PLoS ONE 4:e4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karikari TK, Turner A, Stass R, Lee LC, Wilson B, Nagel DA, Hill EJ, Moffat KG (2017) Expression and purification of tau protein and its frontotemporal dementia variants using a cleavable histidine tag. Protein Expr Purif 130:44–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keenan S, Wetherill SJ, Ugbode CI, Chawla S, Brackenbury WJ, Evans GJ (2017) Inhibition of N1-Src kinase by a specific SH3 peptide ligand reveals a role for N1-Src in neurite elongation by L1-CAM. Sci Rep 7:43106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xie W, Fang G (2008) Fluorescence detection techniques for protein kinase assay. Anal Bioanal Chem 390:2049–2057

    Article  CAS  PubMed  Google Scholar 

  • Liou JS, Liu BR, Martin AL, Huang YW, Chiang HJ, Lee HJ (2012) Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence. Peptides 37:273–284

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Madani F, Abdo R, Lindberg S, Hirose H, Futaki S, Langel U, Graslund A (2013) Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient. Biochim Biophys Acta 1828:1198–1204

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Martin KJ, Arthur JS (2012) Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 63:1227–1237

    Article  CAS  PubMed  Google Scholar 

  • Matenia D, Griesshaber B, Li XY, Thiessen A, Johne C, Jiao J, Mandelkow E, Mandelkow EM (2005) PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell 16:4410–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JA (2014) Canonical and noncanonical roles of Par-1/MARK kinases in cell migration. Int Rev Cell Mol Biol 312:169–199

    Article  CAS  PubMed  Google Scholar 

  • Mephon-Gaspard A, Boca M, Pioche-Durieu C, Desforges B, Burgo A, Hamon L, Pietrement O, Pastre D (2016) Role of tau in the spatial organization of axonal microtubules: keeping parallel microtubules evenly distributed despite macromolecular crowding. Cell Mol Life Sci 73:3745–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15:4671–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherji M (2005) Phosphoproteomics in analyzing signaling pathways. Expert Rev Proteom 2:117–128

    Article  CAS  Google Scholar 

  • Musi N (2006) AMP-activated protein kinase and type 2 diabetes. Curr Med Chem 13:583–589

    Article  CAS  PubMed  Google Scholar 

  • Palasek SA, Cox ZJ, Collins JM (2007) Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 13:143–148

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Prabakaran S, Cantrelle FX, Chambraud B, Gunawardena J, Lippens G, Landrieu I (2016) Characterization of neuronal tau protein as a target of extracellular signal-regulated kinase. J Biol Chem 291:7742–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo I, Berti G, Plotegher N, Bernardo G, Filograna R, Bubacco L, Greggio E (2015) Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-kappaB p50 signaling in cultured microglia cells. J Neuroinflamm 12:230

    Article  CAS  Google Scholar 

  • Sato AK, Viswanathan M, Kent RB, Wood CR (2006) Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17:638–642

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nagai J, Mitsui N, Ryoko Y, Takano M (2009) Effects of endocytosis inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells. Life Sci 85:800–807

    Article  CAS  PubMed  Google Scholar 

  • Scapin G (2006) Protein kinase inhibition: different approaches to selective inhibitor design. Curr Drug Targets 7:1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Schenk PW, Snaar-Jagalska BE (1999) Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta 1449:1–24

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwalbe M, Biernat J, Bibow S, Ozenne V, Jensen MR, Kadavath H, Blackledge M, Mandelkow E, Zweckstetter M (2013) Phosphorylation of human tau protein by microtubule affinity-regulating kinase 2. Biochemistry 52:9068–9079

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi T, Nielsen PE (2006) Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption. Nat Protoc 1:633–636

    Article  CAS  PubMed  Google Scholar 

  • Sironi JJ, Yen SH, Gondal JA, Wu Q, Grundke-Iqbal I, Iqbal K (1998) Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK. FEBS Lett 436:471–475

    Article  CAS  PubMed  Google Scholar 

  • Sreelatha A, Kinch LN, Tagliabracci VS (2015) The secretory pathway kinases. Biochim Biophys Acta 1854:1687–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson SA, Douglas EL, Mertens-Walker I, Lisle JE, Maharaj MS, Herington AC (2015) Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4. Oncotarget 6:7554–7569

    Article  PubMed  PubMed Central  Google Scholar 

  • Tassan JP, Le Goff X (2004) An overview of the KIN1/PAR-1/MARK kinase family. Biol Cell 96:193–199

    Article  CAS  PubMed  Google Scholar 

  • Tejeda-Munoz N, Robles-Flores M (2015) Glycogen synthase kinase 3 in Wnt signaling pathway and cancer. IUBMB Life 67:914–922

    Article  CAS  PubMed  Google Scholar 

  • Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM (2006) Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis 3:207–217

    Article  CAS  PubMed  Google Scholar 

  • Timm T, Marx A, Panneerselvam S, Mandelkow E, Mandelkow EM (2008a) Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of tau protein. BMC Neurosci 9(Suppl 2):S9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timm T, Balusamy K, Li X, Biernat J, Mandelkow E, Mandelkow EM (2008b) Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem 283:18873–18882

    Article  CAS  PubMed  Google Scholar 

  • Timm T, von Kries JP, Li X, Zempel H, Mandelkow E, Mandelkow EM (2011) Microtubule affinity regulating kinase activity in living neurons was examined by a genetically encoded fluorescence resonance energy transfer/fluorescence lifetime imaging-based biosensor: inhibitors with therapeutic potential. J Biol Chem 286:41711–41722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolstikov VV, Cole R, Fang H, Pincus SH (1997) Influence of endosome-destabilizing peptides on efficacy of anti-HIV immunotoxins. Bioconjug Chem 8:38–43

    Article  CAS  PubMed  Google Scholar 

  • Trentini DB, Suskiewicz MJ, Heuck A, Kurzbauer R, Deszcz L, Mechtler K, Clausen T (2016) Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 539:48–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K (2013) Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 33(Suppl 1):S123–S139

    Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266:17707–17712

    CAS  PubMed  Google Scholar 

  • Zhu Q, Liang S, Martin L, Gasparini S, Menez A, Vita C (2002) Role of disulfide bonds in folding and activity of leiurotoxin I: just two disulfides suffice. Biochemistry 41:11488–11494

    Article  CAS  PubMed  Google Scholar 

  • Zorzi A, Middendorp SJ, Wilbs J, Deyle K, Heinis C (2017) Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides. Nature Commun 8:16092

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Department of Chemistry and Biochemistry, the Department of Biological Sciences, the Edison Biotechnology Institute, the College of Arts and Sciences, and the Vice President for Research at Ohio University. Additional funding for this research came from the Ohio Musculoskeletal and Neurological Institute (OMNI) and the Ohio University Research Counsel (proposal #17−15) at Ohio University. Author Najah Alqaeisoom was supported by the Saudi Arabian Cultural Mission (SACM, #397056). The authors would like to thank Professor Kevin G. Moffat for supplying the pProEX-HTa-Myc-K18 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin M. Holub.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Ethical Approval

The care and use of all animals used in this work adhered to the American Physiological Society’s Guiding Principles in the Care and Use of Animals. All experimental procedures utilized herein were approved by the Ohio University Institutional Animal Care and Use Committee. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5993 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alqaeisoom, N., Qian, C., Arachchige, D. et al. Inhibiting Phosphorylation of Tau (τ) Proteins at Ser262 Using Peptide-Based R1 Domain Mimetics. Int J Pept Res Ther 25, 447–463 (2019). https://doi.org/10.1007/s10989-018-9689-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9689-6

Keywords

  • Peptide-based kinase inhibitor
  • MARK2
  • Tau (τ) protein
  • R1 domain
  • Neuroprotection
  • Tauopathy