Skip to main content
Log in

Spontaneous Release of Human Serum Albumin S-Bound Homocysteine in a Thiol-Free Physiological Medium

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Elevated plasma homocysteine (Hcy) concentrations independently predict cardiovascular disease. However, the transport of Hcy into pathological tissues such as atherosclerotic plaques, characterized by relatively low local thiol concentrations, is largely unknown. We sought to address if albumin-bound Hcy can be released in a thiol-free medium with or without previous incubation with Hcy and homocysteine thiolactone (HTL). We found that Hcy release was dependent on the baseline amount of albumin-bound Hcy. After 48 h incubation in a thiol- free medium the quantity of albumin-bound Hcy released from commercial human serum albumin (HSA) was 1.15 mmol/mol prot. If HSA was pre-incubated with 50 µmol/L reduced Hcy and then transferred into a free-thiol medium (HSA-S-Hcy), the amount of Hcy released after 48 h increased to 33.5 mmol/mol prot. If HSA was pre-incubated with 5 mmol/L HTL and then with 50 µmol/L of reduced Hcy (HSA-HTL-S-Hcy), the amount of Hcy released increased to 92.8 mmol/mol prot. Hcy release from HSA-HTL-S-Hcy further increased in presence of cysteine (Cys), glutathione (GSH), or Cys + GSH in the medium. Therefore, a significant amount of albumin-bound Hcy is released into thiol-free environments, similar to atherosclerotic plaques, with potential deleterious effects on vascular homeostasis, atherosclerosis and thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cys:

Cysteine

Hcy:

Homocysteine

GSH:

Glutathione

HSA:

Human serum albumin

HSA-S-Hcy:

Albumin-S-homocysteinylated

HSA-HTL-S-Hcy:

Albumin-N-S-homocysteinylated

HTL:

Homocysteine thiolactone

LMW:

Low molecular weight

References

  • Berman RS, Martin W (1993) Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system. Br J Pharmacol 108:920–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carru C, Deiana L, Sotgia S, Pes GM, Zinellu A (2004) Plasma thiols redox status by laser-induced fluorescence capillary electrophoresis. Electrophoresis 25:882–889

    Article  CAS  PubMed  Google Scholar 

  • de Vries JI, Dekker GA, Huijgens PC, Jakobs C, Blomberg BM, van Geijn HP (1997) Hyperhomocysteinaemia and protein S deficiency in complicated pregnancies. Br J Obstet Gynaecol 104:1248–1254

    Article  PubMed  Google Scholar 

  • Eikelboom JW, Lonn E, Genest J Jr, Hankey G, Yusuf S (1999) Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 131:363–375

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1:228–237

    Article  CAS  PubMed  Google Scholar 

  • Friedman MH, Fry DL (1993) Arterial permeability dynamics and vascular disease. Atherosclerosis 104:189–194

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272:1935–1942

    CAS  PubMed  Google Scholar 

  • Jakubowski H (2002) Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem 277:30425–30428

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H, Goldman E (1993) Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured mammalian cells. FEBS Lett 317:237–240

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Yang F, Brailoiu E, Jakubowski H, Dun NJ, Schafer AI, Yang X, Durante W, Wang H (2007) Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells. Arterioscler Thromb Vasc Biol 27:1976–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karner G, Perktold K (2000) Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study. J Biomech 33:709–715

    Article  CAS  PubMed  Google Scholar 

  • Lepedda AJ, Cigliano A, Cherchi GM, Spirito R, Maggioni M, Carta F, Turrini F, Edelstein C, Scanu AM, Formato M (2009) A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis 203:112–118

    Article  CAS  PubMed  Google Scholar 

  • Lepedda AJ, Zinellu A, Nieddu G, Zinellu E, Carru C, Spirito R, Guarino A, De Muro P, Formato M (2013) Protein sulfhydryl group oxidation and mixed-disulfide modifications in stable and unstable human carotid plaques. Oxid Med Cell Longev 2013:403973

    PubMed  PubMed Central  Google Scholar 

  • Majors AK, Sengupta S, Willard B, Kinter MT, Pyeritz RE, Jacobsen DW (2002) Homocysteine binds to human plasma fibronectin and inhibits its interaction with fibrin. Arterioscler Thromb Vasc Biol 22:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Malinowska J, Olas B (2012) Homocysteine and its thiolactone-mediated modification of fibrinogen affect blood platelet adhesion. Platelets 23:409–412

    Article  CAS  PubMed  Google Scholar 

  • Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 200:218–229

    Article  CAS  PubMed  Google Scholar 

  • Meigs JB, Jacques PF, Selhub J, Singer DE, Nathan DM, Rifai N, D’Agostino Sr RB, Wilson PW (2001) Fasting plasma homocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabetes Care 24:1403–1410

    Article  CAS  PubMed  Google Scholar 

  • Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, Scott JM (1995) Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 345:149–151

    Article  CAS  Google Scholar 

  • Mudd SH, Finkelstein JD, Refsum H, Ueland PM, Malinow MR, Lentz SR, Jacobsen DW, Brattstrom L, Wilcken B, Wilcken DE, Blom HJ, Stabler SP, Allen RH, Selhub J, Rosenberg IH (2000) Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol 20:1704–1706

    Article  CAS  PubMed  Google Scholar 

  • Perła-Kaján J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572

    Article  CAS  PubMed  Google Scholar 

  • Pianka P, Almog Y, Man O, Goldstein M, Sela BA, Loewenstein A (2000) Hyperhomocystinemia in patients with nonarteritic anterior ischemic optic neuropathy, central retinal artery occlusion, and central retinal vein occlusion. Ophthalmology 107:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Regland B, Johansson BV, Grenfeldt B, Hjelmgren LT, Medhus M (1995) Homocysteinemia is a common feature of schizophrenia. J Neural Transm Gen Sect 100:165–169

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Chen H, Togawa T, DiBello PM, Majors AK, Büdy B, Ketterer ME, Jacobsen DW (2001a) Albumin thiolate anion is an intermediate in the formation of albumin-S-S-homocysteine. J Biol Chem 276:30111–30117

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Wehbe C, Majors AK, Ketterer ME, DiBello PM, Jacobsen DW (2001b) Relative roles of albumin and ceruloplasmin in the formation of homocystine, homocysteine-cysteine-mixed disulfide, and cystine in circulation. J Biol Chem 276:46896–46904

    Article  CAS  PubMed  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  CAS  PubMed  Google Scholar 

  • Sikora M, Marczak L, Twardowski T, Stobiecki M, Jakubowski H (2010) Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry. Anal Biochem 405:132–134

    Article  CAS  PubMed  Google Scholar 

  • Spahr PF, Edsall JT (1964) Amino acid composition of Human and bovine serum mercaptalbumin. J Biol Chem 239:850–854

    CAS  PubMed  Google Scholar 

  • Steed MM, Tyagi SC (2011) Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 15:1927–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueland PM (1995) Homocysteine species as components of plasma redox thiol status. Clin Chem 41:340–342

    CAS  PubMed  Google Scholar 

  • Wang H, Tan H, Yang F (2005) Mechanisms in homocysteine-induced vascular disease. Drug Discov Today 2:25–31

    Article  CAS  Google Scholar 

  • Wierzbicki AS (2007) Homocysteine and cardiovascular disease: a review of the evidence. Diab Vasc Dis Res 4:143–150

    Article  PubMed  Google Scholar 

  • Zinellu A, Carru C, Galistu F, Usai MF, Pes GM, Baggio G, Federici G, Deiana L (2003) N-methyl-d-glucamine improves the laser-induced fluorescence capillary electrophoresis performance in the total plasma thiols measurement. Electrophoresis 24:2796–2804

    Article  CAS  PubMed  Google Scholar 

  • Zinellu A, Carru C, Sotgia S, Deiana L (2004) Plasma D-penicillamine redox state evaluation by capillary electrophoresis with laser-induced fluorescence. J Chromatogr B: Anal Technol Biomed Life Sci 803:299–304

    Article  CAS  Google Scholar 

  • Zinellu A, Lepedda AJ, Sotgia S, Zinellu E, Scanu B, Turrini F, Spirito R, Deiana L, Formato M, Carru C (2009a) Evaluation of low molecular mass thiols content in carotid atherosclerotic plaques. Clin Biochem 42:796–801

    Article  CAS  PubMed  Google Scholar 

  • Zinellu A, Sotgia S, Scanu B, Pintus G, Posadino AM, Cossu A, Deiana L, Sengupta S, Carru C (2009b) S-homocysteinylated LDL apolipoprotein B adversely affects human endothelial cells in vitro. Atherosclerosis 206:40–46

    Article  CAS  PubMed  Google Scholar 

  • Zinellu A, Lepedda AJ, Sotgia S, Zinellu E, Marongiu G, Usai MF, Gaspa L, De Muro P, Formato M, Deiana L, Carru C (2010a) Albumin-bound low molecular weight thiols analysis in plasma and carotid plaques by CE. J Sep Sci 33:126–131

    Article  CAS  PubMed  Google Scholar 

  • Zinellu A, Sotgia S, Scanu B, Pisanu E, Sanna M, Sati S, Deiana L, Sengupta S, Carru C (2010b) Determination of homocysteine thiolactone, reduced homocysteine, homocystine, homocysteine-cysteine mixed disulfide, cysteine and cystine in a reaction mixture by overimposed pressure/voltage capillary electrophoresis. Talanta 82:1281–1285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Arduino A. Mangoni has participated to this work during a Visiting Professorship at the University of Sassari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Zinellu.

Ethics declarations

Conflict of interest

The authors declares that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinellu, A., Sotgia, S., Mangoni, A.A. et al. Spontaneous Release of Human Serum Albumin S-Bound Homocysteine in a Thiol-Free Physiological Medium. Int J Pept Res Ther 25, 187–194 (2019). https://doi.org/10.1007/s10989-017-9663-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9663-8

Keywords

Navigation