Bakhle YS (1971) Inhibition of angiotensin I converting enzyme by venom peptides. Br J Pharmacol 43:252–254
CAS
Article
PubMed
PubMed Central
Google Scholar
Bourque CW, Oliet SH, Richard D (1994) Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol 15:231–274. doi:10.1006/frne.1994.1010
CAS
Article
PubMed
Google Scholar
Camargo AC, Ianzer D, Guerreiro JR, Serrano SM (2012) Bradykinin-potentiating peptides: beyond captopril. Toxicon 59:516–523. doi:10.1016/j.toxicon.2011.07.013
CAS
Article
PubMed
Google Scholar
Coleman TG, Manning RD Jr, Norman RA Jr, DeClue J (1975) The role of the kidney in spontaneous hypertension. Am Heart J 89:94–98
CAS
Article
PubMed
Google Scholar
Guerreiro JR et al (2009) Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: role in arginine and nitric oxide production. J Biol Chem 284:20022–20033. doi:10.1074/jbc.M109.021089
CAS
Article
PubMed
PubMed Central
Google Scholar
Hayashi MA et al (2003) The C-type natriuretic peptide precursor of snake brain contains highly specific inhibitors of the angiotensin-converting enzyme. J Neurochem 85:969–977
CAS
Article
PubMed
Google Scholar
Ianzer D et al (2007) Do the cardiovascular effects of angiotensin-converting enzyme (ACE) I involve ACE-independent mechanisms? new insights from proline-rich peptides of Bothrops jararaca J Pharmacol Exp Ther 322:795–805. doi:10.1124/jpet.107.120873
CAS
Article
PubMed
Google Scholar
Ianzer D et al (2011) BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect. Ther Adv Cardiovasc Dis. doi:10.1177/1753944711427318
PubMed
Google Scholar
Jovanovic D, Dimitrijevic J, Varagic J, Jovovic D, Starcevic A, Djukanovic L (1998) Effects of captopril on morphologic changes in kidney of spontaneously hypertensive rats with adriamycin nephropathy. Ren Fail 20:451–458
CAS
Article
PubMed
Google Scholar
Ketteler M, Ritz E (2000) Renal failure: a state of nitric oxide deficiency? Kidney Int 58:1356–1357. doi:10.1046/j.1523-1755.2000.00294.x
CAS
Article
PubMed
Google Scholar
Moe GW, Legault L, Skorechi KL (1991) Control of Extracelular Fluid Volume and Phatophysiology of Edema Formation. In: Saunders W, Brenner BM, Rector FC (eds) The Kidney. 4th edn., Elsevier, Philadelphia, pp 623–676
Google Scholar
Morais KL et al (2013) Proline rich-oligopeptides: diverse mechanisms for antihypertensive action. Peptides 48:124–133. doi:10.1016/j.peptides.2013.07.016
CAS
Article
PubMed
Google Scholar
Ondetti MA, Rubin B, Cushman DW (1977) Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196:441–444
CAS
Article
PubMed
Google Scholar
Paschoal JF et al (2014) Insights into cardiovascular effects of proline-rich oligopeptide (Bj-PRO-10c) revealed by structure-activity analyses: dissociation of antihypertensive and bradycardic effects. Amino Acids 46:401–413. doi:10.1007/s00726-013-1630-x
CAS
Article
PubMed
Google Scholar
Roman RJ, Cowley AW, Jr. (1985) Abnormal pressure-diuresis-natriuresis response in spontaneously hypertensive rats Am J Physiol 248:F199–F205
Google Scholar
Roysommuti S, Mozaffari MS, Berecek KH, Wyss JM (1999) Lifetime treatment with captopril improves renal function in spontaneously hypertensive rats. Clin Exp Hypertens 21:1315–1325
CAS
Article
PubMed
Google Scholar
Silva CA, Ianzer DA, Portaro FC, Konno K, Faria M, Fernandes BL, Camargo AC (2008a) Characterization of urinary metabolites from four synthetic bradykinin potentiating peptides (BPPs) in mice. Toxicon 52:501–507. doi:10.1016/j.toxicon.2008.06.024
Silva CA et al (2008b) Tissue distribution in mice of BPP 10c, a potent proline-rich anti-hypertensive peptide of Bothrops jararaca. Toxicon 51:515–523. doi:10.1016/j.toxicon.2007.11.003
Tashima AK et al (2012) Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics 11:1245–1262. doi:10.1074/mcp.M112.019331
Article
PubMed
PubMed Central
Google Scholar