Advertisement

Betaine Down Regulates Apelin Gene Expression in Cardiac and Adipose Tissues of Insulin Resistant Diabetic Rats Fed by High-Calorie Diet

  • Majid Nazari
  • Eskandar Moghimipour
  • Mohammad Reza Tabandeh
Article
  • 124 Downloads

Abstract

Apelin is a newly discovered peptide that its serum level increases in diabetic patients with cardiovascular dysfunction. Recent studies indicate the beneficial actions of betaine in reducing the cardiovascular and metabolic complications, however data related to its effect on adipocytokine expression is limited. The aim of this study was to evaluate the effect of betaine supplementation on Apelin gene expression in cardiac muscle and adipose tissue of insulin resistance, diabetic rats fed by a high calorie diet. To induce insulin resistance rats were fed with high fat/high carbohydrate diet for five weeks and then 30 mg/kg STZ was injected intraperitoneally. After confirming of diabetes incidence (serum glucose above 7.5 mmol/l) the animals were treated with 1 % betaine in drinking water for 28 days. At days 14 and 28 after treatment, animals were euthanized and Apelin gene expression was evaluated by real time PCR and western blot in heart and adipose tissues. Serum levels of insulin, Apelin and glucose and HOMA–IR were also measured. Our results showed that feeding of rats by a high calorie diets caused insulin resistance, which was manifested by elevated plasma insulin, glucose and Apelin levels and also HOMA–IR. Apelin gene expression in heart and adipose tissues were significantly increased simultaneously with the progression of diabetes. Betaine supplementation decreased serum Apelin and down regulated Apelin expression in adipose tissue and cardiac muscle, particularly at day 28 of treatment. We concluded that betaine might improve metabolic and cardiovascular complications in diabetic patients by regulation of Apelin expression and secretion.

Keywords

High-calorie diet Insulin resistance Betaine Apelin gene expression Heart Adipose tissue 

Notes

Acknowledgments

This work was funded by a Grant from Ahvaz Jundishapur University of Medical Sciences Research Council and Shahid Chamran University of Ahvaz (Grant No. 636410, 1394.4.6).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88(2):389–419CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akcılar R, Turgut S, Caner V, Akcılar A, Ayada C, Elmas L, Özcan TO (2015) The effects of apelin treatment on a rat model of type 2 diabetes. Adv Med Sci 60(1):94–100CrossRefPubMedGoogle Scholar
  3. Alfarano C, Foussal C, Lairez O, Calise D, Attané C, Anesia A, Daviaud D, Wanecq E, Parini A, Valet P, Kunduzova O (2015) Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin. Int J Obes 39:312–320CrossRefGoogle Scholar
  4. Alirezaei M, Niknam P, Jelodar G (2012a) Betaine elevates ovarian antioxidant enzyme activities and demonstrates methyl donor effect in non-pregnant rats. Int J Pept Res Ther 18(3):281–290CrossRefGoogle Scholar
  5. Alirezaei M, Jelodar G, Ghayemi Z (2012b) Antioxidant defense of betaine against oxidative stress induced by ethanol in the rat testes. Int J Pept Res Ther 18(3):239–247CrossRefGoogle Scholar
  6. Atluri P, Morine KJ, Liao GP, Panlilio CM, Berry MF, Hsu VM, Hiesinger W, Cohen JE, Joseph Woo Y (2007) Ischemic heart failure enhances endogenous myocardial apelin and APJ receptor expression. Cell Mol Biol Lett 12(1):127–138CrossRefPubMedGoogle Scholar
  7. Attane C, Foussal C, Le Gonidec S, Benani A, Daviaud D, Wanecq E (2012) Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice. Diabetes 61:310–320CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ba HJ, Chen HS, Su Z, Du ML, Chen QL, Li YH (2014) Associations between serum apelin-12 levels and obesity-related markers in chinese children. PLoS One 9(1):e86577CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146:1764–1771CrossRefPubMedGoogle Scholar
  10. Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, Bollheimer LC (2006) Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 36:485–501CrossRefPubMedGoogle Scholar
  11. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622CrossRefPubMedGoogle Scholar
  12. Chiariello M (1996) Silent myocardial ischemia in patients with diabetes mellitus. Circulation 93:2089–2091CrossRefPubMedGoogle Scholar
  13. Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80(30):539–549PubMedGoogle Scholar
  14. de Voorde JV, Pauwels B, Boydens C, Decaluwé K (2013) Adipocytokines in relation to cardiovascular disease. Metabolism 88:389–419Google Scholar
  15. Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buléon M (2008) Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab 8(5):437–445CrossRefPubMedGoogle Scholar
  16. Essop MF, Opie LH (2004) Metabolic therapy for heart failure. Eur Heart J 25:1765–1768CrossRefPubMedGoogle Scholar
  17. Frier BC, Williams DB, Wright DC (2009) The effects of apelin treatment on skeletal muscle mitochondrial content. Am J Physiol Regul Integr Comp Physiol 297:R1761–R1768CrossRefPubMedGoogle Scholar
  18. Guo L, Li Q, Wang W, Yu P, Pan H, Li P, Sun Y, Zhang J (2009) Apelin inhibits insulin secretion in pancreatic beta-cells by activation of PI3-kinase-phosphodiesterase. Endocr Res 34(4):142–154CrossRefPubMedGoogle Scholar
  19. Iwanaga Y, Kihara Y, Takenaka H, Kita T (2006) Down-regulation of cardiac apelin system in hypertrophied and failing hearts: possible role of angiotensin II-angiotensin type 1 receptor system. J Mol Cell Cardiol 41:798–806CrossRefPubMedGoogle Scholar
  20. Jang A, Kim D, Sung KS, Jung S, Kim HJ, Jo C (2014) The effect of dietary α-lipoic acid, betaine, l-carnitine, and swimming on the obesity of mice induced by a high-fat diet. Food Funct 5(8):1966–1974CrossRefPubMedGoogle Scholar
  21. Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J, Adamson J, Johnston NR, Denvir MA, Megson IL, Flapan AD, Newby DE (2010) Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation 121(16):1818–1827CrossRefPubMedGoogle Scholar
  22. Kathirvel E, Morgan K, Nandgiri G, Sandoval BC, Caudill MA, Bottiglieri T, French SW, Morgan TR (2010) Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am J Physiol Gastrointest Liver Physiol 299(5):1068–1077CrossRefGoogle Scholar
  23. Kidd MT, Ferket PR, Garlich JD (1997) Nutritional and osmoregulatory functions of betaine. Worlds Poult Sci J 53:125–139CrossRefGoogle Scholar
  24. Kleinz MJ, Skepper JN, Davenport AP (2005) Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept 126(3):233–240CrossRefPubMedGoogle Scholar
  25. Koguchi W, Kobayashi N, Takeshima H, Ishikawa M, Sugiyama F, Ishimitsu T (2012) Cardioprotective effect of apelin-13 on cardiac performance and remodeling in end-stage heart failure. Circ J 76:137–144CrossRefPubMedGoogle Scholar
  26. Krist J, Wieder K, Klöting N, Oberbach A, Kralisch S, Wiesner T, Schön MR, Gärtner D, Dietrich A, Shang E, Lohmann T, Dreßler M, Fasshauer M, Stumvoll M, Blüher M (2013) Effects of weight loss and exercise on apelin serum concentrations and adipose tissue expression in human obesity. Obes Facts 6(1):57–69CrossRefPubMedGoogle Scholar
  27. Kuba K, Zhang L, Imai Y, Arab S, Chen M, Maekawa Y et al (2007) Impaired heart contractility in apelin gene-deficient mice associated with aging and pressure overload. Circ Res 17(101):e32–e42CrossRefGoogle Scholar
  28. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74(1):34–41CrossRefPubMedGoogle Scholar
  29. Lever M, George PM, Elmslie JL, Atkinson W, Slow S, Molyneux SL, Troughton RW, Richards AM, Frampton CM, Chambers ST (2012) Betaine and secondary events in an acute coronary syndrome cohort. PLoS One 7(5):e37883CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li L, Yang G, Li Q, Tang Y, Yang M, Yang H (2006) Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes 114(10):544–548CrossRefPubMedGoogle Scholar
  31. Livak K (1997) ABI Prism 7700 sequence detection system. User Bulletin 2. PE. Applied Biosystems, Foster CityGoogle Scholar
  32. Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald E (2015) Braunwald’s heart disease: a textbook of cardiovascular medicine, vol 46, 10th edn. Elsevier, PhiladelphiaGoogle Scholar
  33. Nakamura K, Fuster JJ, Walsh K (2014) Adipokines: a link between obesity and cardiovascular disease. J Cardiol 63:250–259CrossRefPubMedGoogle Scholar
  34. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, Losano G, Samaja M, Pagliaro P (2011) Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 300(6):2308–2315CrossRefGoogle Scholar
  36. Reaux A, De Mota N, Skultetyova I, Lenkei Z, El Messari S, Gallatz K (2001) Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77:1085–1096CrossRefPubMedGoogle Scholar
  37. Romacho T, Elsen M, Röhrborn D, Eckel J (2014) Adipose tissue and its role in organ crosstalk. Acta Physiol 210:733–753CrossRefGoogle Scholar
  38. Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W et al (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287CrossRefPubMedGoogle Scholar
  40. Seifi S, Tabandeh MR, Nazifi S, Saeb M, Shirian S, Sarkooh P (2012) Regulation of adiponectin gene expression in adipose tissue by thyroid hormones. J Physiol Biochem 68:193–203CrossRefPubMedGoogle Scholar
  41. Sharov VG, Todor AV, Silverman N, Goldstein S, Sabbah HN (2000) Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 32:2361–2367CrossRefPubMedGoogle Scholar
  42. Sorhede Winzell M, Magnusson C, Ahre´n B (2005) The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept 131:12–17CrossRefPubMedGoogle Scholar
  43. Soriguer F, Garrido-Sanchez L, Garcia-Serrano S, Garcia-Almeida JM, Garcia-Arnes J, Tinahones FJ et al (2009) Apelin levels are increased in morbidly obese subjects with type 2 diabetes mellitus. Obes Surg 11(2009):1574–1580CrossRefGoogle Scholar
  44. Szokodi I, Tavi P, Földes G, Voutilainen-Myllylä S, Ilves M, Tokola H et al (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91(5):434–440CrossRefPubMedGoogle Scholar
  45. Tatemoto K, Takayama K, Zou M-X, Kumaki I, Zhang W, Kumano K (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99(2):87–92CrossRefPubMedGoogle Scholar
  46. Wang Z, Yao T, Pini M, Zhou Z, Fantuzzi G, Song Z (2010) Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 298(5):634–642CrossRefGoogle Scholar
  47. Zeng H, He X, Hou X, Li L, Chen JX (2014) Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3. Am J Physiol Heart Circ Physiol 306:H585–H597CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Majid Nazari
    • 1
  • Eskandar Moghimipour
    • 1
  • Mohammad Reza Tabandeh
    • 2
  1. 1.Department of Pharmaceutics, School of PharmacyAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Biochemistry and Molecular Biology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran

Personalised recommendations