Skip to main content

Advertisement

Log in

Expression and Characterization of Antimicrobial Peptide LL-37 in Dog Peripheral Blood Endothelial Progenitor Cells In Vitro

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

This study aimed to construct antimicrobial peptide LL-37 expressed lentiviral vector and explore the expression of LL-37 in endothelial progenitor cells (EPCs) from dog periphery mononuclear cells (PBMCs). The methodology on obtaining EPCs from dog PBMCs was explored and infection approach about the expression of LL-37 in EPCs was optimized. LL-37 was amplified, digested by Age I and constructed into pGC-FU vector. Meanwhile, EPCs were generated from PBMCs using endothelial growth medium. Markers including acetylated low density lipoproteins (Dilac-LDL), Ulex lectin (UEA-1), von Willebrand factor (vWF), VE-cadherin, CD34 and CD133 were used to identify EPCs. Then, LL-37 was introduced into EPCs using lentivirus infection with green fluorescent protein (GFP) as the biomarker. Finally, we used western-blot to examine the expression of LL-37 in EPCs. The pGC-FU-LL-37-GFP was successfully constructed. Viral particles existed in 10−4 μL group with titer of 2 × 108 TU/mL. Both early (round-shaped morphology) and late (pebble-shaped appearance) EPCs were observed. And these EPCs were confirmed by Dil-acLDL uptake and FITC-UEA-1 binding. An approximate 50 % of infection efficacy was confirmed by immunofluorescence. Furthermore, we successfully observed LL-37 expression in EPCs via western blot analysis. In conclusions, LL-37 expressed in the EPCs was successfully achieved. However, the anti-infection and angiogenesis of LL-37 expressed EPCs need further research in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29(11):1650–1655. doi:10.1002/stem.745

    Article  CAS  PubMed  Google Scholar 

  • Auvynet C, Rosenstein Y (2009) Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J 276(22):6497–6508

    Article  CAS  PubMed  Google Scholar 

  • Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci 95(16):9541–9546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang EI, Loh SA, Ceradini DJ, Lin SE, Bastidas N, Aarabi S, Chan DA, Freedman ML, Giaccia AJ, Gurtner GC (2007) Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation 116(24):2818–2829. doi:10.1161/CIRCULATIONAHA.107.715847

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Baumhueter S, Cacalano G, Carver-Moore K, Thibodeaux H, Thomas R, Broxmeyer H, Cooper S, Hague N, Moore M (1996) Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87(2):479–490

    CAS  PubMed  Google Scholar 

  • Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429

    Article  CAS  PubMed  Google Scholar 

  • De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192(7):1069–1074

    Article  Google Scholar 

  • Dürr UH, Sudheendra U, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(9):1408–1425

    Article  Google Scholar 

  • Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197(2):496–503

    Article  CAS  PubMed  Google Scholar 

  • Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P, Delia D, Sutherland DR, Baker MA, Greaves MF (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75(12):2417–2426

    CAS  PubMed  Google Scholar 

  • Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, Lidén S, Jörnvall H, Boman HG (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 237(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Frohm M, Agerberth B, Ahangari G, Ståhle-Bäckdahl M, Lidén S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272(24):15258–15263

    Article  CAS  PubMed  Google Scholar 

  • Gombart AF, Bhan I, Borregaard N, Tamez H, Camargo CA, Koeffler HP, Thadhani R (2009) Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis. Clin Infect Dis 48(4):418–424

    Article  CAS  PubMed  Google Scholar 

  • Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clinic Immunol 135(1):1–11

    Article  Google Scholar 

  • Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120(3):379–389. doi:10.1046/j.1523-1747.2003.12069.x

    Article  CAS  PubMed  Google Scholar 

  • Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23(7):1185–1189

    Article  CAS  PubMed  Google Scholar 

  • Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103(9):1231–1236. doi:10.1172/JCI6889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T (2002a) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105(6):732–738

    Article  CAS  PubMed  Google Scholar 

  • Iwaguro H, J-i Yamaguchi, Kalka C, Murasawa S, Masuda H, S-i Hayashi, Silver M, Li T, Isner JM, Asahara T (2002b) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105(6):732–738

    Article  CAS  PubMed  Google Scholar 

  • Johansson J, Gudmundsson GH, Rottenberg MnE, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273(6):3718–3724

    Article  CAS  PubMed  Google Scholar 

  • Kajiya M, Shiba H, Komatsuzawa H, Ouhara K, Fujita T, Takeda K, Uchida Y, Mizuno N, Kawaguchi H, Kurihara H (2010) The antimicrobial peptide LL37 induces the migration of human pulp cells: a possible adjunct for regenerative endodontics. J Endod 36(6):1009–1013. doi:10.1016/j.joen.2010.02.028

    Article  PubMed  Google Scholar 

  • Kittaka M, Shiba H, Kajiya M, Ouhara K, Takeda K, Kanbara K, Fujita T, Kawaguchi H, Komatsuzawa H, Kurihara H (2013) Antimicrobial peptide LL37 promotes vascular endothelial growth factor-A expression in human periodontal ligament cells. J Periodontal Res 48(2):228–234. doi:10.1111/j.1600-0765.2012.01524.x

    Article  CAS  PubMed  Google Scholar 

  • Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111(11):1665–1672. doi:10.1172/JCI17545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin RZ, Dreyzin A, Aamodt K, Dudley AC, Melero-Martin JM (2011) Functional endothelial progenitor cells from cryopreserved umbilical cord blood. Cell Transplant 20(4):515–522. doi:10.3727/096368910X532729

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu JW, Pernod G, Dunoyer-Geindre S, Fish RJ, Yang H, Bounameaux H, Kruithof EK (2006) Promoter dependence of transgene expression by lentivirus-transduced human blood-derived endothelial progenitor cells. Stem Cells 24(1):199–208

    Article  PubMed  Google Scholar 

  • Mohan T, Mitra D, Rao D (2013) Comparative in-vitro functional analysis of synthetic defensins and their corresponding peptide variants against HIV-1NL4. 3, E. coli, S. aureus and P. aeruginosa. Int J Pept Res Ther 19(3):245–255

    Article  CAS  Google Scholar 

  • Naldini L, Blömer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci 93(21):11382–11388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfosser A, El-Aouni C, Pfisterer I, Dietz M, Globisch F, Stachel G, Trenkwalder T, Pinkenburg O, Horstkotte J, Hinkel R, Sperandio M, Hatzopoulos AK, Boekstegers P, Bals R, Kupatt C (2010) NF kappaB activation in embryonic endothelial progenitor cells enhances neovascularization via PSGL-1 mediated recruitment: novel role for LL37. Stem Cells 28(2):376–385. doi:10.1002/stem.280

    CAS  PubMed  Google Scholar 

  • Ramos R, Silva JP, Rodrigues AC, Costa R, Guardao L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M (2011a) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32(7):1469–1476. doi:10.1016/j.peptides.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  • Ramos R, Silva JP, Rodrigues AC, Costa R, Guardão L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M (2011b) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32(7):1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107(8):1164–1169

    Article  PubMed  Google Scholar 

  • Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R, Doetschman T (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478

    CAS  PubMed  Google Scholar 

  • Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51(3):187–200

    Article  CAS  PubMed  Google Scholar 

  • Toledo JR, Prieto Y, Oramas N, Sánchez O (2009) Polyethylenimine-based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Appl Biochem Biotechnol 157(3):538–544

    Article  CAS  PubMed  Google Scholar 

  • Tongers J, Roncalli JG, Losordo DW (2010) Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc Res 79(3):200–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urbich C, Dimmeler S (2004) Endothelial progenitor cells characterization and role in vascular biology. Circ Res 95(4):343–353

    Article  CAS  PubMed  Google Scholar 

  • Vaughan EE, Liew A, Mashayekhi K, Dockery P, McDermott J, Kealy B, Flynn A, Duffy A, Coleman C, O’Regan A, Barry FP, O’Brien T (2012) Pretreatment of endothelial progenitor cells with osteopontin enhances cell therapy for peripheral vascular disease. Cell Transplant 21(6):1095–1107. doi:10.3727/096368911X623880

    Article  CAS  PubMed  Google Scholar 

  • Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90(12):5002–5012

    CAS  PubMed  Google Scholar 

  • Yoon C-H, Hur J, Park K-W, Kim J-H, Lee C-S, Oh I-Y, Kim T-Y, Cho H-J, Kang H-J, Chae I-H (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112(11):1618–1627

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, Yw., Yang, S. et al. Expression and Characterization of Antimicrobial Peptide LL-37 in Dog Peripheral Blood Endothelial Progenitor Cells In Vitro. Int J Pept Res Ther 21, 279–287 (2015). https://doi.org/10.1007/s10989-014-9453-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-014-9453-5

Keywords

Navigation