Skip to main content

Advertisement

Log in

A Head-to-Head Comparison of the Antimicrobial Activities of 30 Ultra-Short Antimicrobial Peptides Against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The rapid emergence of drug-resistant bacteria and the lack of new antibiotics entering the market is a major worldwide concern. Antimicrobial peptides (AMPs) are deemed plausible drug candidates as they specifically target and disrupt microbial cell membranes, causing death by cell lysis. However, their instability towards plasma proteases and perceived high manufacturing cost limit their potential for further drug development. A plausible solution is to identify and develop very short linear peptides as topical agents for treating skin and soft tissue infections. A literature survey yielded 30 ultra-short AMPs up to 9 residues in length with antimicrobial activities. They were commercially synthesized and a head-to-head antimicrobial activity comparison was conducted on common skin pathogens including meticillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The topical broad-spectrum antibiotic Gentamicin and antifungal Nystatin were included as controls. Experimental results revealed only 2 peptides with potent broad-spectrum activities; octapeptide IRIRIRIR-NH2 and nonapeptide Ac-KWRRWVRWI-NH2 exhibited MICs of 6.25 μM against all test microbes. Both peptides have been reported to be non-cytotoxic to human cells, suggesting that they could potentially be further developed as topical antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abbassi F, Lequin O, Piesse C, Goasdoué N, Foulon T, Nicolas T et al (2010) Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem 285:16880–16892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478

    Article  CAS  PubMed  Google Scholar 

  • Athar MA, Winner HI (1971) Development of resistance by Candida species to polyene antibiotics in vitro. J Med Microbiol 4:505–517

    Article  CAS  PubMed  Google Scholar 

  • Bassetti M, Merelli M, Temperoni C, Astilean A (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 12:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Bisht GS, Rawat DS, Kumar A, Kumar R, Pasha S (2007) Antimicrobial activity of rationally designed amino terminal modified peptides. Bioorg Med Chem Lett 17:4343–4346

    Article  CAS  PubMed  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Catiau L, Traisnel J, Delval-Dubois V, Chihib N, Guillochon D, Nedjar-Arroume N (2011a) Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 32:633–638

    Article  CAS  PubMed  Google Scholar 

  • Catiau L, Traisnel J, Chihib N, Le Flem G, Blanpain A, Melnyk O et al (2011b) RYH: A minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity. Peptides 32:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (2006) Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. Document M100-S16. CLSI, Wayne

  • Cutuli M, Cristiani S, Lipton JM, Catania A (2000) Antimicrobial effects of α-MSH peptides. J Leukoc Biol 67:233–239

    CAS  PubMed  Google Scholar 

  • Dryden MS (2010) Complicated skin and soft tissue infection. J Antimicrob Chemother 65(Suppl 3): iii35–44

  • Fimland G, Eijsink VG, Nissen-Meyer J (2002) Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41:9508–9515

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    CAS  Google Scholar 

  • Gopal R, Kim YJ, Seo CH, Hahm KS, Park Y (2011) Reversed sequence enhances antimicrobial activity of a synthetic peptide. J Pept Sci 17:329–334

    Article  CAS  PubMed  Google Scholar 

  • Guzmán F, Marshall S, Ojeda C, Albericio F, Carvajal-Rondanelli P (2013) Inhibitory effect of short cationic homopeptides against Gram-positive bacteria. J Pept Sci 19:792–800

    Article  PubMed  Google Scholar 

  • Hancock REW (2000) Cationic antimicrobial peptides: towards clinical applications. Exp Opin Invest Drugs 9:1723–1729

    Article  CAS  Google Scholar 

  • Hancock REW, Sahl H (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Hilpert K, Volkmer-Engert R, Walter T, Hancock REW (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 23:1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Hilpert K, Elliott M, Jenssen H, Kindrachuk J, Fjell CD, Körner J et al (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock CA, Barrett-Bee KJ, Russell NJ (1987) The lipid composition and permeability to azole of an azole- and polyene-resistant mutant of Candida albicans. J Med Vet Mycol 25:29–37

    Article  CAS  PubMed  Google Scholar 

  • King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM (2006) Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 144:309–317

    Article  PubMed  Google Scholar 

  • Liakopoulou-Kyriakides M, Pachatouridis C, Ekateriniadou L, Papageorgiou VP (1997) A new synthesis of the tripeptide Gly-His-Lys with antimicrobial activity. Amino Acids 13:155–161

    Article  CAS  Google Scholar 

  • Limbago B, Fosheim GE, Schoonover V, Crane CE, Nadle J, Petit S et al (2009) Characterization of methicillin-resistant Staphylococcus aureus isolates collected in 2005 and 2006 from patients with invasive disease: a population-based analysis. J Clin Microbiol 47:1344–1351

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C et al (2007) Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 51:597–603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB et al (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674

    Article  CAS  PubMed  Google Scholar 

  • Murugan RN, Jacob B, Kim EH, Ahn M, Sohn H, Seo JH et al (2013) Non hemolytic short peptidomimetics as a new class of potent and broad-spectrum antimicrobial agents. Bioorg Med Chem Lett 23:4633–4636

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan K, Senthamarai R, Devi K, Deepa SS, Anandh N, Krishnaveni P et al (2008) Assessment of antimicrobial activity for the smaller chain dipeptides and tripeptides. J Cell Tissue Res 8:1265–1269

    CAS  Google Scholar 

  • Naidoo VB, Rautenbach M (2013) Self-assembling organo-peptide bolaphiles with KLK tripeptide head groups display selective antibacterial activity. J Pept Sci 19:784–791

    Article  CAS  PubMed  Google Scholar 

  • Ong ZY, Gao SJ, Yang YY (2013) Short synthetic β-sheet forming peptide amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Adv Funct Mater 23:3682–3692

    Article  CAS  Google Scholar 

  • Pérez-Vázquez M, Vindel A, Marcos C, Oteo J, Cuevas O, Trincado P et al (2009) Spread of invasive Spanish Staphylococcus aureus spa-type t067 associated with a high prevalence of the aminoglycoside-modifying enzyme gene ant(4′)-Ia and the efflux pump genes msrA/msrB. J Antimicrob Chemother 63:21–31

    Article  PubMed  Google Scholar 

  • Qi X, Zhou C, Li P, Xu W, Cao Y, Ling H et al (2010) Novel short antibacterial and antifungal peptides with low cytotoxicity: efficacy and action mechanisms. Biochem Biophys Res Commun 398:594–600

    Article  CAS  PubMed  Google Scholar 

  • Ramón-García S, Mikut R, Ng C, Ruden S, Volkmer R, Reischl M et al (2013) Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob Agents Chemother 57:2295–2303

    Article  PubMed Central  PubMed  Google Scholar 

  • Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131:7609–7617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romanelli A, Moggio L, Montella RC, Campiglia P, Iannaccone M, Capuano F et al (2011) Peptides from royal jelly: studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins. J Pept Sci 17:348–352

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48:3112–3118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz FJ, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E, Verhoef J et al (1999) The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother 43:253–259

    Article  CAS  PubMed  Google Scholar 

  • Segal E (2005) Candida, still number one—what do we know and where are we going from there? Mycoses 48(Suppl. 1):3–11

    Article  PubMed  Google Scholar 

  • Selby NM, Shaw S, Woodier N, Fluck RJ, Kolhe NV (2009) Gentamicin-associated acute kidney injury. QJM 102:873–880

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Kim JK, Lee JY, Jung KW, Hwang JS, Lee J et al (2009) Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. J Pept Sci 15:559–568

    Article  CAS  PubMed  Google Scholar 

  • Shooshtarizadeh P, Zhang D, Chich J, Gasnier C, Schneider F, Haïkel Y et al (2010) The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. Regul Pept 165:102–110

    Article  CAS  PubMed  Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM et al (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164

    Article  PubMed  Google Scholar 

  • Strøm MB, Rekdal Ø, Svendsen JS (2002) Antimicrobial activity of short arginine- and tryptophan-rich peptides. J Pept Sci 8:431–437

    Article  PubMed  Google Scholar 

  • Strøm MB, Haug BF, Skar ML, Stensen W, Stiberg T, Svendsen JS (2003) The pharmacophore of short cationic antibacterial peptides. J Med Chem 46:1567–1570

    Article  PubMed  Google Scholar 

  • Wei SY, Wu JM, Kuo YY, Chen HL, Yip BS, Tzeng SR et al (2006) Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J Bacteriol 188:328–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  CAS  PubMed  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  PubMed  Google Scholar 

  • Zorko M, Japelj B, Hafner-Bratkovič I, Jerala R (2009) Expression, purification and structural studies of a short antimicrobial peptide. Biochim Biophys Acta 1788:314–323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A*STAR Biomedical Research Council for financial support.

Conflict of Interest

Qiu Ying Lau, Xing Yao Choo, Zhi Xue Lim, Xin Ni Kong, Fui Mee Ng, Melgious J. Y. Ang, Jeffrey Hill and C. S. Brian Chia declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies involving human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Brian Chia.

Additional information

Xing Yao Choo, Zhi Xue Lim, and Xin Ni Kong have contributed equally in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, Q.Y., Choo, X.Y., Lim, Z.X. et al. A Head-to-Head Comparison of the Antimicrobial Activities of 30 Ultra-Short Antimicrobial Peptides Against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans . Int J Pept Res Ther 21, 21–28 (2015). https://doi.org/10.1007/s10989-014-9440-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-014-9440-x

Keywords

Navigation