Skip to main content
Log in

Structural Conversion Rate Changes of Recombinant Bovine Prion by Designed Synthetic Peptides

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

An understanding of structural changes and self-assembly of proteins, which are thought to involve specific peptide–peptide interactions, will contribute to the development of therapeutic agents and diagnosis for the detection of conformational diseases. We hypothesize that certain peptides may contribute to the conformational change of prion proteins. The present paper describes the discovery of prion-related synthetic peptides which influence structural conversion of recombinant bovine prion protein. The peptides designed are prion-protein fragments containing core domains consisting of α-helical (human prion protein fragment 180–195) and known β-sheet (human prion protein fragment 169–175) structures. Additionally several reported known β-sheet breaker peptides and a conjugate consisting of β-sheet and α-helix segments based on the secondary structures of human prion protein, designated HPPSH, have been chemically synthesized by the conventional Fmoc solid-phase method and characterized by circular dichroism and the Thioflavin T fluorescence method. Our data indicated that the co-existence of peptides, HPPSH or other prion fragment peptides involving toxic core sequence (the fragment 106–126), influenced the kinetic rate of aggregation and the lag-time of fibril formation of recombinant bovine prion protein except the core sequence itself. The method will be used for discovery of responsible material from natural resources. And designed peptides can be also used for bio-detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Fmoc:

9-Fluorenylmethoxycarbonyl

HBTU:

(2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminiumhexafluoro-phosphate

HOBt:

1-Hydroxybenzotriazol

DIEA:

N,N-Diisopropyl ethylamine

TFA:

Trifluoroacetic acid

DMF:

N,N-Dimethylformamide

ThT:

Thioflavin T

CD:

Circular dichroism

IR:

Infrared ray

TEM:

Transmission electron microscopy

TFE:

Trifluoroethanol

hPrP:

Human prion protein

rbPrP:

Recombinant bovine prion protein

References

  • Abalos GC, Cruite JT, Bellon A, Hemmers S, Akagi J, Mastrianni JA, Williamson RA, Solforosi L (2008) Identifying key components of the PrPC–PrPSc replicative interface. J Biol Chem 283:34021–34028

    Article  PubMed  CAS  Google Scholar 

  • Bocharova OV, Breydo L, Salnikov VV, Baskakov IV (2005) Copper(II) inhibits in vitro conversion of Prion protein into amyloid fibrils. Biochemistry 44:6776–6787

    Article  PubMed  CAS  Google Scholar 

  • Boshuizen RS, Schulz V, Morbin M, Mazzoleni G, Meloen RH, Langedijk JP (2009) Heterologous stacking of prion protein peptides reveals structural details of fibrils and facilitates complete inhibition of fibril growth. J Biol Chem 284:12809–12820

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-M, Tsai TWT, Huang WYC, Lee H-K, Lian H-Y, Chou F-C, Mou Y, Chan JCC (2011) Steric zipper formed by hydrophobic peptide fragment of Syrian hamster prion protein. Biochemistry 50:6815–6823

    Article  PubMed  CAS  Google Scholar 

  • De Gioia L, Selvaggini C, Ghibaudi E, Diomede L, Bugiani O, Forloni G, Tagliavini F, Salmona M (1994) Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. J Biol Chem 269:7859–7862

    PubMed  Google Scholar 

  • Di Natale G, Impellizzeri G, Pappalardo G (2005a) Conformational properties of peptide fragments homologous to the 106–114 and 106–126 residues of the human prion protein: a CD and NMR spectroscopic study. Org Biomol Chem 3:490–497

    Article  PubMed  Google Scholar 

  • Di Natale G, Grasso G, Impellizzeri G, La Mendola D, Micera G, Mihala N, Nagy Z, Osz K, Pappalardo G, Rigó V, Rizzarelli E, Sanna D, Sóvágó I (2005b) Copper(II) interaction with unstructured prion domain outside the octarepeat region: speciation, stability, and binding details of copper(II) complexes with PrP106-126 peptides. Inorg Chem 44:7214–7225

    Article  PubMed  Google Scholar 

  • Dupiereux I, Zorzi W, Lins L, Brasseur R, Colson P, Heinen E, Elmoualij B (2005) Interaction of the 106–126 prion peptide with lipid membranes and potential implication for neurotoxicity. Biochem Biophys Res Commun 331:894–901

    Article  PubMed  CAS  Google Scholar 

  • Evans KC, Berger EP, Cho CG, Weisgraber KH, Lans bury PT Jr (1995) Apolipoprotein E is a kinetic but not thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 92:763–767

    Article  PubMed  CAS  Google Scholar 

  • García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz LJ, Gravel C, Furic R, Côté S, Tulla-Puche J, Albericio F (2006) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220

    Article  PubMed  Google Scholar 

  • Grasso D, Grasso G, Guantieri V, Impellizzeri G, La Rosa C, Milardi D, Micera G, Osz K, Pappalardo G, Rizzarelli E, Sanna D, Sóvágó I (2005) Environmental effects on a prion’s helix II domain: copper(II) and membrane interactions with PrP180-193 and its analogues. Chemistry 12:537–547

    PubMed  CAS  Google Scholar 

  • Haris PI, Chapman D (1995) The conformational analysis of peptides using Fourier transform IR spectroscopy. Biopolymers 37:251–263

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Ohyama T, Hirata A, Nokihara K (2010) Fingerprint-detection of sugar-binding proteins generated by labeled structured glycopeptides arrays. Bull Chem Soc Jpn 83:799–801

    Article  CAS  Google Scholar 

  • Kuroda Y, Maeda Y, Sawa S, Shibata K, Miyamoto K, Nakagawa T (2003) Effects of detergents on the secondary structures of prion protein peptides as studied by CD spectroscopy. J Pept Sci 9:212–220

    Article  PubMed  CAS  Google Scholar 

  • López GF, Zahn R, Riek R, Wüthrich K (2000) NMR structure of the bovine prion protein. Proc Natl Acad Sci 97:145–150

    Article  Google Scholar 

  • Miyazato N, Hirata A, Kawakami H, Kawahira N, Ohyama T, Nokihara K (2008) Efficient solid-phase synthesis and purification of β-amyloid peptides by improved protocols with a novel HPLC column. In: Aimoto S, Ono S (eds) Peptide science 2007. Japanese Peptide Society, pp 143–146

  • Natalello A, Prokorov VV, Tagliavini F, Morbin M, Forloni G, Beeg M, Manzoni C, Colombo L, Gobbi M, Salmona M, Doglia SM (2008) Conformational plasticity of the Gerstmann–Sträussler–Scheinker disease peptide as indicated by its multiple aggregation pathways. J Mol Biol 381:1349–1361

    Article  PubMed  CAS  Google Scholar 

  • Nokihara K, Nagawa Y, Hong S-P, Nakanishi H (1997) Efficient solid-phase synthesis of a large peptide by a single coupling protocol with a single step of HPLC purification. Lett Pept Sci 4:141–146

    CAS  Google Scholar 

  • Nokihara K, Yasuhara T, Nakata Y, Lerner EA, Wray V (2007) Chemical synthesis of Maxadilan, a non-mammalian potent vasodilatory peptide consisting of 61 amino acids with two disulfide bridges, and its related peptides. Int J Pept Res Ther 13:377–386

    Article  CAS  Google Scholar 

  • Nokihara K, Ohyama T, Ono N, Kawakami H, Kawahira N, Kodama Y, Miyazato N, Suzuki K, Miyajima M, Sogon T, Hirata A, Kawasaki T, Takebayashi Y, Oka Y (2008) Development of peptide arrays as sensor elements and novel chip-materials focusing on practical bio-chip production. In: Aimoto S, Ono S (eds) Peptide science 2007. Japanese Peptide Society, pp 106–108

  • Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278:245–250

    Article  PubMed  CAS  Google Scholar 

  • Rehders D, Claasen B, Redecke L, Buschke A, Reibe C, Jehmlich N, von Bergen M, Betzel C, Meyer B (2009) Peptide NMHRYPNQ of the cellular prion protein (PrPC) inhibits aggregation and is a potential key for understanding prion–prion interaction. J Mol Biol 392:198–207

    Article  PubMed  CAS  Google Scholar 

  • Ronga L, Palladino P, Ragone R, Benedetti E, Rossi F (2009) A thermodynamic approach to the conformational preferences of the 180–195 segment derived from the human prion protein α2-helix. J Pept Sci 15:30–35

    Article  PubMed  CAS  Google Scholar 

  • Satheeshkumar KS, Jayakumar R (2003) Conformational polymorphism of the amyloidogenic peptide homologous to residues 113–127 of the prion protein. Biophys J 85:473–483

    Article  PubMed  CAS  Google Scholar 

  • Satheeshkumar KS, Murali J, Jayakumar R (2004) Assemblages of prion fragments: novel model systems for understanding amyloid toxicity. J Struct Biol 148:176–193

    Article  PubMed  CAS  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  PubMed  CAS  Google Scholar 

  • Soto C, Kascsak RJ, Saborío GP, Aucouturier P, Wisniewski T, Prelli F, Kascsak R, Mendez E, Harris DA, Ironside J, Tagliavini F, Carp RI, Frangione B (2000) Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet 355:192–197

    Article  PubMed  CAS  Google Scholar 

  • Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskako IV (2010) The α-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel β-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance. Biochemistry 49:9488–9497

    Article  PubMed  CAS  Google Scholar 

  • Walsh P, Simonetti K, Sharpe S (2009) Core structure of amyloid fibrils formed by residues 106–126 of the human prion protein. Structure 17:417–426

    Article  PubMed  CAS  Google Scholar 

  • Winsor CP (1932) The Gompertz curve as a growth curve. Proc Natl Acad Sci USA 18:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wray V, Kakoschke C, Nokihara K, Naruse S (1993) Solution structure of pituitary adenylate cyclase activating polypeptide by nuclear magnetic resonance spectroscopy. Biochemistry 32:5832–5841

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J, Sticht H, Marx UC, Müller W, Rösch P, Schwarzinger S (2003) CD and NMR studies of prion protein (PrP) helix 1. Novel implications for its role in the PrPC→PrPSc conversion process. J Biol Chem 278:50175–50181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. K. Fukano, Tokyo University of Agriculture, Ms. M. Miyajima, HiPep Laboratories for their technical assistance, Drs. S. Mohri, T. Yokoyama and K. Kasai, Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Japan for discussion and Dr. V. Wray, Helmholtz Centre for Infection Research, Braunschweig, Germany, for variable discussion with linguistic advice. A part of this work was funded by the Research and Development Program for New Bio-industry Initiatives, National Agriculture and Food Research Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Nokihara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4715 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, A., Yajima, S., Yasuhara, T. et al. Structural Conversion Rate Changes of Recombinant Bovine Prion by Designed Synthetic Peptides. Int J Pept Res Ther 18, 217–225 (2012). https://doi.org/10.1007/s10989-012-9294-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-012-9294-z

Keywords

Navigation