Skip to main content

Advertisement

Log in

Sterically Stabilized Phospholipid Micelles Reduce Activity of a Candidate Antimicrobial Wound Healing Adjunct

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

An Erratum to this article was published on 25 March 2012

Abstract

KSLW is an antimicrobial decapeptide, presumed to associate with micelles. Linear polymeric chains of hydrophobic phospholipids tend to form micelles, spontaneously, and function as efficient drug-stabilizing delivery systems. Our goal was to examine whether association of a cationic decapeptide with sterically stabilized nanomicelles (SSMs), improves stability and antimicrobial effect in vivo, using an impaired healing model. KSLW solutions were prepared in either saline or 12 mM SSM. Bilateral circular excisional wounds were created on the backs of SKH-1 mice followed by intradermal delivery of peptide solutions. Bacterial assays were conducted to assess bioactivity of KSLW in different formulations. Fluorescence analyses demonstrated an optimum lipid:peptide ratio for loading KSLW in PEGylated phospholipid micelles to be 15:1. Stressed animals treated with KSLW–SSM preparations demonstrated no differences in microbial load at post-operative time points. In vitro assays against Staphylococcus epidermidis confirmed diminished activity of KSLW in SSM solution. The loss of KSLW antimicrobial activity may be based on electrostatic interactions with the anionic surface of SSM, which interfere with the peptide’s interaction with bacterial membranes. This study emphasizes the importance of antimicrobial peptide charge, size, and bioactivity, when designing delivery systems for wound healing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arleth L, Ashok B, Önyüksel H, Thiyagarajan P, Jacob J, Hjelm RP (2005) Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir 21:3279–3290

    Article  PubMed  CAS  Google Scholar 

  • Aronson NE, Sanders JW, Moran KA (2006) In harm’s way: infections in deployed American military forces. Clin Infect Dis 43(8):1045–1051

    Article  PubMed  Google Scholar 

  • Ashok B, Arleth L, Hjelm RP, Rubinstein I, Önyüksel H (2004a) In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci 93:2476–2487

    Article  PubMed  CAS  Google Scholar 

  • Ashok B, Rubinstein I, Tsueshita T, Önyüksel H (2004b) Effects of chain length on the vasoreactivity of VIP and PACAP1−38 in pegylated phospolipid micelles. Peptides 25:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Barrick B, Campbell EJ, Owen CA (1999) Leukocyte proteinases in wound healing: roles in physiologic and pathologic processes. Wound Rep Reg 7(6):410–422

    Article  CAS  Google Scholar 

  • Borgoño CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, Sotiropoulou G, Diamandis EP (2007) A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 282(6):3640–3652

    Article  PubMed  Google Scholar 

  • Bouttefroy A, Mansour M, Linder M, Milliere JB (2000) Inhibitory combinations of nisin, sodium chloride, and pH on Listeria monocytogenes ATCC 15313 in broth by an experimental design approach. Int J Food Microbiol 54:109–115

    Article  PubMed  CAS  Google Scholar 

  • Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34(6):419–427

    Article  PubMed  CAS  Google Scholar 

  • Brandenburg KS, Rubinstein I, Sadikot RT, Onyuksel H (2011) Polymyxin B self-associated with phospholipid nanomicelles. Pharm Dev Technol. doi:10.3109/10837450.2011.572893

  • Calhoun JH, Murray CK, Manring MM (2008) Multidrug-resistant organisms in military wounds from Iraq and Afganistan. Clin Orthop Relat Res 466:1356–1362

    Article  PubMed  Google Scholar 

  • Cesur H, Rubinstein I, Önyüksel H (2009) Self-associated indisulam in phospholipid-based nanomicelles: a potential medicine for cancer. Nanomedicine 5:178–183

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Yang JT, Martinez HM (1972) Determination of the secondary structure of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11:4120–4131

    Article  PubMed  CAS  Google Scholar 

  • Concannon SP, Crowe TD, Abercrombie JJ, Molina CM, Hou P, Sukumaran DK, Raj PA, Leung K-P (2003) Susceptibility of oral bacteria to an antimicrobial decapeptide. J Med Microbiol 52:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Davis SC, Bouzari N (2004) Development of antimicrobials for wound care: in vitro and in vivo assessments. Wounds 16(11):344–347

    Google Scholar 

  • Dhabhar FS, McEwen BS (1999) Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA 96:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Dixon DR, Karimi-Naser L, Darveau RP, Leung KP (2008) The anti-endotoxic effects of KSL-W decapeptide on Escherichia coli O55:B5 and various oral lipopolysaccharides. J Periodont Res 43:422–430

    Article  PubMed  CAS  Google Scholar 

  • Doumas S, Kolokotronis A, Stefanopoulos P (2005) Anti-inflammatory and antimicrobial roles of secretory leukocyte protease inhibitor. Infect Immun 73(3):1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Faraj JA, Dorati R, Schoubben A, Worthen D, Selmin F, Capan Y, Leung K, DeLuca PP (2007) Development of a peptide-containing chewing gum as a sustained release antiplaque antimicrobial delivery system. AAPS PharmSciTech 8(1):E1–E9

    Article  Google Scholar 

  • Feuz L, Textor M (2005) A PEG-based co-polymer for protein resistant surfaces studied by ellipsometry and quartz crystal microbalance. Eur Cells Mater 10(5):BS9

    Google Scholar 

  • Gandhi S, Tsueshita T, Önyüksel H, Chandiwala R, Rubinstein I (2002) Interactions of human secretin with sterically stabilized phospholipid micelles amplify peptide-induced vasodilation in vivo. Peptides 23(8):1433–1439

    Article  PubMed  CAS  Google Scholar 

  • Gelperina S (2007) Nanocarriers and drug delivery. In: Schlag PM, Stein US, Eggermont AMM (eds) Cancer drug discovery and development: regional cancer therapy. Humana Press, Totowa, pp 163–179

    Google Scholar 

  • Gilmore K, Chen P, Leung KP (2009) Antimicrobial peptides for plaque control and beyond. CDA J 37(11):779–788

    Google Scholar 

  • Hong SY, Oh JE, Kwon MY, Choi MJ, Lee JH, Lee BL, Moon HM, Lee KH (1997) Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob Agents Chemother 42(10):2534–2541

    Google Scholar 

  • Horan MP, Quan N, Subramanian SV, Strauch AR, Gajendrareddy PK, Marucha PT (2005) Impaired wound contraction and delayed myofibroblast differentiation in restraint-stressed mice. Brain Behav Immun 19(3):207–216

    Article  PubMed  CAS  Google Scholar 

  • Johnson EN, Burns TC, Hayda RA, Hospenthal DR, Murray CK (2007) Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis 45(4):409–415

    Article  PubMed  Google Scholar 

  • Kabanov AV, Batrakova EV, Alakhov V (2002) Pluronic® block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 54:759

    Article  PubMed  CAS  Google Scholar 

  • Klein RS, Berger SA, Yekutiel P (1975) Wound infection during theYom Kippur war: observations concerning antibiotic prophylaxis and therapy. Ann Surg 182:15–21

    Article  PubMed  CAS  Google Scholar 

  • Leung K-P, Crowe TD, Abercrombie JJ, Molina CM, Bradshaw CJ, Jensen CL, Luo Q, Thompson GA (2005) Control of oral biofilm formation by an antimicrobial decapeptide. J Dent Res 84(12):1172–1177

    Article  PubMed  CAS  Google Scholar 

  • Mercado AM, Padgett DA, Sheridan JF, Marucha PT (2002) Altered kinetics of IL-1α, IL-1β, and KGF-1 gene expression in early wounds of restrained mice. Brain Behav Immun 16:150–162

    Article  PubMed  CAS  Google Scholar 

  • Murray CK, Roop SA, Hospenthal DR, Dooley DP, Wenner K, Hammock J, Taufen N, Gourdine E (2006) Bacteriology of war wounds at the time of injury. Mil Med 171(9):826–829

    PubMed  Google Scholar 

  • Na DH, Faraj J, Capan Y, Leung K-P, DeLuca PP (2007) Stability of antimicrobial decapeptide (KSL) and its analogues for delivery in the oral cavity. Pharm Res 24(8):1544–1550

    Article  PubMed  CAS  Google Scholar 

  • Oh JE, Hong SY, Lee K-H (1998) Structure–activity relationship study: short antimicrobial peptides. J Pept Res 53:41–46

    Article  Google Scholar 

  • Önyüksel H, Ikezaki H, Patel M, Gao XP, Rubinstein I (1999) A novel formulation of VIP in sterically stabilized micelles amplifies vasodilation in vivo. Pharm Res 16:155–160

    Article  PubMed  Google Scholar 

  • Önyüksel H, Séjourné F, Suzuki H, Rubinstein I (2006) Human VIP-α: a long-acting biocompatible and biodegradable peptide nanomedicine for essential hypertension. Peptides 27:2271–2275

    Article  PubMed  Google Scholar 

  • Pai A, Rubinstein I, Önyüksel H (2006) PEGylated phospholipid micelles interact with beta amyloid (1–42) and mitigate its beta-sheet formation, aggregation and neurotoxicity in vitro. Peptides 27(11):2858–2866

    Article  PubMed  CAS  Google Scholar 

  • Petersen K, Riddle MS, Danko JR, Blazes DL, Hayden R, Tasker SA, Dunne JR (2007) Trauma-related infections in battlefield casualties from Iraq. Ann Surg 245(5):803–811

    Article  PubMed  Google Scholar 

  • Robson MC (1997) Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin N Am 77(3):637–650

    Article  PubMed  CAS  Google Scholar 

  • Robson MC, Mannari RJ, Smith PD, Payne WG (1999) Maintenance of wound bacterial balance. Am J Surg 178:399–402

    Article  PubMed  CAS  Google Scholar 

  • Rojas I-G, Padgett DA, Sheridan JF, Marucha PT (2002) Stress-induced susceptibility to bacterial infection during cutaneous wound healing. Brain Behav Immun 16:74–84

    Article  PubMed  Google Scholar 

  • Saxena VP, Wetlaufer DB (1971) A new basis for interpreting the circular dichroic spectra of proteins. PNAS 68(5):969–972

    Article  PubMed  CAS  Google Scholar 

  • Semlali A, Leung KP, Curt S, Rouabhia M (2011) Antimicrobial decapeptide KSL-W attenuates Candida albicans virulence by modulating its effects on toll-like receptor, human β-defensin, and cytokine expression by engineered human oral mucosa. Peptides 32(5):859–867

    Article  PubMed  CAS  Google Scholar 

  • Sroussi HY, Williams RL, Zhang QL, Villines D, Marucha PT (2009) Ala42S100A8 ameliorates psycholocial-stress impaired cutaneous wound healing. Brain Behav Immun 23:753–759

    Article  Google Scholar 

  • Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, Murphy G, Schultz G (1999) Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 7:442–452

    Article  PubMed  CAS  Google Scholar 

  • Wattendorf U, Koch MC, Walter E (2006) Phagocytosis of poly(l-lysine)-graft-poly(ethylene glycol) coated microspheres by antigen presenting cells: Impact of grafting and poly(ethylene glycol) chain on cellular recognition. Biointerphases 1(4):123–133

    Article  PubMed  CAS  Google Scholar 

  • Webb MS, Saxon D, Wong FMP, Lim HJ, Wang Z, Bally MB, Choi LSL, Cullis PR, Mayer LD (1998) Comparison of different hydrophobic anchors conjugated to poly(ethylene glycol): effects on the pharmacokinetics of liposomal vincristine. Biochim Biophys Acta 1372:272–282

    Article  PubMed  CAS  Google Scholar 

  • Williams RL, Sroussi HY, Leung K, Marucha PT (2012a) Antimcrobial decapeptide KSL-W enhances neutrophil chemotaxis and function. Peptides 33:1–8

    Article  PubMed  CAS  Google Scholar 

  • Williams RL, Sroussi HY, Abercrombie JJ, Leung KP, Marucha PT (2012b) Synthetic decapeptide enhances bacterial clearance and accelerates healing in the wounds of restraint-stressed mice. Brain Behav Immun. doi:10.1016/j.bbi.2012.01.020

  • Yager DR, Nwomeh BC (1999) The proteolytic environment of chronic wounds. Wound Repair Regen 7:433–441

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  PubMed  CAS  Google Scholar 

  • Yun HC, Murray CK, Roop SA, Hospenthal DR, Gourdine E, Dooley DP (2006) Bacteria recovered from patients admitted to a deployed U.S. Military Hospital in Baghdad, Iraq. Mil Med 171(9):821–825

    PubMed  Google Scholar 

  • Yun HC, Branstetter JG, Murray CK (2008) Osteomyelitis in military personnel wounded in Iraq and Afghanistan. J Trauma 64(2 Suppl):S163–S168

    Article  PubMed  Google Scholar 

  • Zhang H, Yoshida S, Aizawa T, Murakami R, Suzuki M, Koganezawa N, Matsuura A, Miyazawa M, Kawano K, Nitta K, Kato Y (2000) In vito antimicrobial properties of recombinant ASABF, an antimicrobial peptide isolated from the nematode Ascaris suum. Antimicrob Agents Chemother 44(10):2701–2705

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Kai Leung and Mr. Johnathan Abercrombie, DTRD, for providing the peptide and performing in vitro microbiology assays, respectively. This study was supported by the US Army Medical Research and Materiel Command, Grant #W74SHSQZ6160N548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, R.L., Lim, S.B., Onyuksel, H. et al. Sterically Stabilized Phospholipid Micelles Reduce Activity of a Candidate Antimicrobial Wound Healing Adjunct. Int J Pept Res Ther 18, 195–203 (2012). https://doi.org/10.1007/s10989-012-9292-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-012-9292-1

Keywords

Navigation