Skip to main content
Log in

Further Characterization of a Novel Tetrapeptide with an Analgesic Action in the Central and Peripheral Nervous System in Rats

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The novel tetrapeptide FLPS has been previously shown to induce antinociception in a model of post-incisional pain in the rat. It has been demonstrated in membrane preparations of rat brain that 10 μM tetrapeptide did not compete with [3H]naloxone for its binding site on the opioid receptors which differentiates it from typical opioids. In the first set of experiments, the stimulation of [35S]GTPγS binding by the tetrapeptide to membrane preparations of recombinant cell lines expressing human μ, δ, and κ receptors has been investigated. The specific [35S]GTPγS binding did not change in the presence of 100 μM tetrapeptide and DAMGO, DPDPE, or U-69593 at submaximal and maximal concentrations, indicating that the tetrapeptide was not an agonist or antagonist of the opioid receptors and it did not stimulate or blocked the stimulation of G-proteins coupled to these receptors. Studies with naloxone and naloxone methiodide pretreatment suggested that the tetrapeptide was either directly or indirectly affected by a naloxone-binding site located primarily within the central nervous system and to a lesser extent in the periphery. Naloxone pretreatment had a dual effect on morphine antinociception based on the concentration used. At 2 mg/kg, naloxone competed reversibly with 25 mg/kg morphine on its binding site on the opioid receptors, while at 5.4 mg/kg it blocked antinociception induced by 10 mg/kg morphine, 2.7 mg/kg aspirin, or 75 mg/kg tetrapeptide. These data suggest that a new naloxone-binding site is involved in alleviation of pain by at least three classes of analsegics (opioids, cycloogenase 2 inhibitors, and the tetrapeptide). The biological activity of the peptide was discovered first and the mechanism of action is now being studied. In an attempt to identify the therapeutic target of the tetrapeptide, a total of 23 radioligand binding assays to targets within the CNS were conducted. The results of these assays were negative and they reinforce the notion that the tetrapeptide activates an unknown mechanism involved in pain perception after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

CGP 54,626:

[S-(R*,R*)]-[3-[[1-(3,4-Dichlorophenyl)ethyl]amino]-2-hydroxypropyl](cyclohexylmethyl) phosphinic acid

COX-2:

Cyclooxygenase 2

CNS:

Central nervous system

DMSO:

Dimethyl sulfoxide

DPCPX:

8-Cyclopentyl-1,3-dipropylxanthine

GABA:

γ-Aminobutyric acid

5-HT:

5-Hydroxytryptamine

NSAID:

Non-steroidal anti-inflammatory drug

SCH 23,390:

(R)-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine

R-PIA:

N6-[(R)-1-methyl-2-phenyl–ethyl]adenosine

Tyr-S36057:

Dodecapeptide melanin-concentrating hormone (MCH 6–17)

WIN 55,212-2:

(R)-(+)-[2,3-Dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone

References

  • Alt A, Mansour A, Akil H, Medzihradsky F, Traynor JR, Woods JH (1998) Mu-opioid receptor specific antagonist cyprodime: characterization by in vitro radiocompound and [35S]GTPγS binding assays. Eur J Pharmacol 383:209–214

    Google Scholar 

  • Ardati A, Henningsen RA, Higelin J, Reinscheid RK, Civelli O, Monsma FJ Jr (1997) Interaction of [3H]orphanin FQ and [125I]Tyr14-orphanin FQ with the orphanin FQ receptor: kinetics and modulation by cations and guanine nucleotides. Mol Pharmacol 51:816–824

    PubMed  CAS  Google Scholar 

  • Audinot V, Lahaye C, Suply T, Beaauverger P, Rodrigeuz M, Galizzi JP, Fauchère JL, Boutin JA (2001) [125I]-S36057: a new and highly potent radiocompound for the melanin-concentrating hormone receptor. Br J Pharmacol 133:371–378

    Article  PubMed  CAS  Google Scholar 

  • Belardetti F (2010) Evolving therapeutic indications for N-type calcium channel blockers: from chronic pain to alcohol abuse. Future Med Chem 2:791–802

    Article  PubMed  CAS  Google Scholar 

  • Blurton PA, Broadhurst AM, Wood MD, Wyllie MG (1986) Is there a common, high-affinity opioid binding site in rat brain? J Recept Res 6:85–93

    PubMed  CAS  Google Scholar 

  • Bo X, Burnstock G (1990) High- and low-affinity binding sites for [3H]-α,β-methylene ATP in rat urinary bladder membranes. Br J Pharmacol 101:291–296

    PubMed  CAS  Google Scholar 

  • Boyajian CL, Leslie FM (1987) Pharmacological evidence for α2-adrenoceptor heterogeneity: differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. JPET 241:1092–1098

    CAS  Google Scholar 

  • Brennan TJ (1999) Postoperative models of nociception. ILAR J 40:129–136

    PubMed  Google Scholar 

  • Burgess G, Williams D (2010) The discovery and development of analgesics: new mechanisms, new modalities. J Clin Invest 120:3753–3759

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Morrow CS, Daly JW, Brown CB (1981) Binding of batrachotoxin A 20-alpha-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J Biol Chem 267:20820–20825

    Google Scholar 

  • Childers SR, Creese I, Snowman AM, Snyder SH (1978) Opiate receptor binding affected differently by opiates and opioid peptides Eur J Pharmcol 55:11–18

    Google Scholar 

  • Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (1990) Cloning and expression of human and rat D1 dopamine receptors. Nature 347:76–80

    Article  PubMed  Google Scholar 

  • Davila-Garcia MI, Musachio JL, Perry DC, Xiao Y, Horti A, London ED, Dannals RF, Kellar KJ (1997) [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. JPET 282:445–451

    CAS  Google Scholar 

  • Davis ME, Akera T, Brody TM, Watson L (1977) Opiate receptor: Cooperativity of binding observed in brain slices. Proc Natl Acad Sci USA 74:5764–5766

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Shankar G, Mickel M (1989) 2-[125I]iodomelatonin labels sites with identical pharmacological characteristics in chicken brain and chicken retina. Eur J Pharmacol 162:289–299

    Article  PubMed  CAS  Google Scholar 

  • Facklam M, Bowery NG (1993) Solubiliaztion and characterization of GABAB receptor binding sites from porcine brain synaptic membranes. Br J Pharmacol 110:1291–1296

    PubMed  CAS  Google Scholar 

  • Farooqui M, Geng ZH, Stephenson JE, Zaveri N, Yee D, Gupta K (2006) Naloxone acts as an antagonist of estrogen receptor activity in MCF-7 cells. Mol Cancer Ther 5:611–620

    Article  PubMed  CAS  Google Scholar 

  • Ferreira SH (1972) Prostaglandins, aspirin-like drugs and analgesia. Nat New Biol 240:200–203

    Article  PubMed  CAS  Google Scholar 

  • Fimiani C, Libertya T, Aquirrea AJ, Amina I, Alia N, Stefano GB (1999) Opiate, cannabinoid, and eicosanoid signaling converges on common intracellular pathways nitric oxide coupling. Prostaglandins Other Lipid Mediat 57:23–34

    Article  PubMed  CAS  Google Scholar 

  • Fundytus ME (2001) Glutamate receptors and nociception: Implications for the drug treatment of pain. CNS Drugs 15:29–58

    Article  PubMed  CAS  Google Scholar 

  • Galli A, DeFelice LJ, Duke BJ, Moore KR, Blakely RD (1995) Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J Exp Biol 198:2197–2212

    PubMed  CAS  Google Scholar 

  • Heuillet E, Bouaiche Z, Menager J, Dugay P, Munoz N, Dubois H, Amiranoff B, Crespo A, Lavayre J, Blanchard JC, Doble A (1994) The human galanin receptor: compound-binding and functional characteristics in the Bowes melanoma cell line. Eur J Pharmacol 269:139–147

    Article  PubMed  CAS  Google Scholar 

  • Kukonen JP, Holmqvist T, Ammoun S, Akerman KE (2002) Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol 283:C1567–C1591

    Google Scholar 

  • Lee CY, Akera T, Stolman S, Brody TM (1975) Saturable binding of dihydromorphine and naloxone to rat brain tissue in vitro. JPET 194:583–592

    CAS  Google Scholar 

  • Levine JD, Gordon NC, Fields HL (1979) Naloxone dose dependently produces antinociceptive and hyperalgesia in postoperative pain. Nature 278:740–741

    Article  PubMed  CAS  Google Scholar 

  • Lewanowitsch T, Irvine RJ (2003) Naloxone and its quaternary derivative, naloxone methiodide, have differing affinities for μ, δ, and κ opioid receptors in mouse brain homogenates. Brain Res 964:302–305

    Article  PubMed  CAS  Google Scholar 

  • Libert F, Sande JV, Lefort A, Czernilofsky A, Dumont JE, Vassart G, Ensinger HA, Mendia KD (1992) Cloning and functional characterization of a human A1 adenosine receptor. BBRC 187:919–926

    PubMed  CAS  Google Scholar 

  • Lyengar S, Webster AM, Hemrick-Luecke SK, Xu JY, Simmons RMA (2004) Efficacy of duloxetine, a potent and balanced serotonin-norepinephrine reuptake inhibitor in persistent pain models in rats. JPET 311:576–584

    Article  Google Scholar 

  • Maggdalene MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurbiol 14:362–369

    Article  Google Scholar 

  • Marki A, Monory K, Otvos F, Toth G, Krassnig R, Schmidhammer H, Traynor JR, Roques BP, Maldonado R, Borsodi A (1999) Mu-opioid receptor specific antagonist cyprodime: characterization by in vitro radiocompound and [35S]GTPγS binding assays. Eur J Pharmacol 383:209–214

    Article  PubMed  CAS  Google Scholar 

  • Middlemiss DN (1984) Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranolol. Eur J Pharmacol 101:289–293

    Article  PubMed  CAS  Google Scholar 

  • Milne RJ, Coddington JM, Gamble GD (1990) Quaternary naloxone blocks morphine antinociceptive in spinal but not intact rats. Neurosci Lett 114:259–264

    Article  PubMed  CAS  Google Scholar 

  • Moresco RM, Govoni S, Battani F, Trivulzio S, Trabucchi M (1990) Omegaconotoxin binding decreases in aged rat brain. Neurobiol Aging 11:433–436

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  PubMed  CAS  Google Scholar 

  • Peat S (2010) Using cannabinoids in pain and palliative care. Int J Palliat Nurs 16:481–485

    PubMed  Google Scholar 

  • Quock RM, Hosohata Y, Knapp RJ, Burkey TH, Hosohata K, Zhang X, Rice KC, Nagase H, Hruby VJ, Porreca F, Roeske WR, Yamamura HI (1997) Relative efficacies of delta-opioid receptor agonists at the cloned human delta-opioid receptor. Eur J Pharmacol 326:101–104

    Article  PubMed  CAS  Google Scholar 

  • Rehm H, Lazdunski M (1988) Purification and subunit structure of a putative K+ channel protein identified by its binding properties for dendrotoxin I. Proc Natl Acad Sci USA 85:4919–4923

    Article  PubMed  CAS  Google Scholar 

  • Rioss CD, Gomes I, Dei LA (2006) μ Opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395

    Article  Google Scholar 

  • Rothman RB, Westfall TC (1983) Interaction of leucine enkephalin with (3H)naloxone binding in rat brain: evidence for an opioid receptor complex. Neur Res 8:913–931

    CAS  Google Scholar 

  • Sandrinia M, Ottania A, Vitaleb G, Alberto L (1998) Acetylsalicylic acid potentiates the antinociceptive effect of morphine in the rat: involvement of the central serotonergic system. Eur J Pharmacol 355:133–140

    Article  Google Scholar 

  • Schoemaker H, Langer SZ (1985) [3H]Diltiazem binding to calcium channel antagonist recognition sites in rat cerebral cortex. Eur J Pharmacol 111:273–277

    Article  PubMed  CAS  Google Scholar 

  • Sheikh SP, O’Hare MMT, Tortora O, Schwartz TW (1998) Binding of monoiodinated neuropeptide Y to hipocampal membranes and human neuroblastoma cell lines. J Biol Chem 264:6648–6654

    Google Scholar 

  • Sim-Selley LJ, Xiao R, Childers SR (2000) Anatomical distribution of sodium-dependent [3H]naloxone binding sites in rat brain. Synapse 35:256–264

    Article  PubMed  CAS  Google Scholar 

  • Skubatz H, Brot MD, Stock KM, Klatt B, Thomas GP (2009) Antinociceptive and antipyretic activities of a novel tetrapeptide in rats. Int J Pept Res Therapeut 15:293–301

    Article  CAS  Google Scholar 

  • Suzuki T, Miyata M, Zaima C, Furuishi T, Fukami T, Kugawa F, Tomono K (2010) Blood-brain barrier transport of naloxone does not involve P-glycoprotein-mediated efflux. J Pharm Sci 99:413–421

    Article  PubMed  CAS  Google Scholar 

  • Tepperman FS, Hirst M, Smith P (1983) Brain and serum levels of naloxone following peripheral administration. Life Sci 33:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Fukushima N, Kitao T, Geand M, Hiroshi T (1986) Low doses of naloxone produce analgesia in the mouse brain by blocking presynaptic autoinhibition of enkephalin release. Neurosci Lett 65:247–252

    Article  PubMed  CAS  Google Scholar 

  • Vane JR, Botting RM (1998) Mechanism of action of nonsteroidal antiinflammatory drugs. Am J Med 104:2S–8S

    Article  PubMed  CAS  Google Scholar 

  • Wang H-Y, Frankfurt M, Burns LH (2008) High-affinity naloxone binding to filamin A prevents mu opioid receptor-Gs coupling underlying opioid tolerance and dependence. PLoS ONE 3:e1554

    Article  PubMed  Google Scholar 

  • Weinstein SH, Pfeffer M, Schor JM, Franklin L, Mintz M, Tutko ER (1973) Absorption and distribution of naloxone in rats after oral and intravenous administration. J Pharm Sci 62:1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Whiteside GT, Harrison J, Boulet J, Mark L, Pearson M, Gottshall S (2004) Pharmacological characterisation of a rat model of incisional pain. Br J Pharmacol 141:85–91

    Article  PubMed  CAS  Google Scholar 

  • Williams JT (1997) Analgesia: the painless synergism of aspirin and opium. Nature 390:557–559

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ (1980) Antinociceptive and hyperalgesia produced in the rat by intrathecal naloxone. Brain Res 189:593–597

    Article  PubMed  CAS  Google Scholar 

  • Zahn PK, Brennan TJ (1999) Primary and secondary hyperalgesia in a rat model for human post-operative pain. Anesthesiol 90:863–872

    Article  CAS  Google Scholar 

  • Zhu J, Luo LY, Li JG, Chen C, Liu-Chen LY (1997) Activation of the cloned human kappa opioid receptor by agonists enhances [35S]GTPγS binding to membranes: determination of potencies and efficacies of compounds. JPET 282:676–684

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michelle D. Brot for helpful comments and Ricerca Biosciences for the screening assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Skubatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skubatz, H., Klatt, B. Further Characterization of a Novel Tetrapeptide with an Analgesic Action in the Central and Peripheral Nervous System in Rats. Int J Pept Res Ther 18, 41–52 (2012). https://doi.org/10.1007/s10989-011-9277-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-011-9277-5

Keywords

Navigation