Skip to main content
Log in

Synthesis of N-Glycopeptides by Convergent Assembly

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Electron-donating O-benzylated glycosylamine mono-, di- and trisaccharide representing the reducing terminal of the core structure of N-glycans were incorporated, in anomerically pure from into Leu–Lys–Asn–Gly-Gly–Pro hexapeptide that is a partial structure of the Trp-cage mini-protein by convergent assembly. According to our results acylation of electron-donating O-benzylated glycosylamine with peptide acid under the proposed new reaction conditions led to the formation of glycopeptide in good yield and in anomerically pure form for the first time. This convergent approach allows the synthesis of a series of glycopeptides containing different oligosaccharides without the need to resynthesize the peptide for each individual case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Notes

  1. Typical experimental procedure for the key coupling reaction: To a solution of the glycosylazide (112 μmol) in dry DMF (1 ml), PtO2 (5 mg) was added and the mixture was stirred under hydrogen for 90 min. Then, selectively protected hexapeptide (112 μmol) in dry DMF (1 ml) was added under argon followed by the addition of the mixture of HBTU (112 μmol) and iPr2NEt (224 μmol) in DMF (1 ml) at -20°C. After stirring for 2 h at -20°C the mixture was concentrated. Column chromatography of the residue afforded the glycopeptide.

  2. Selected spectroscopic and physical data: compound 4: δH (d 6-DMSO) 4.99 (1 H, H-1); δC (d 6-DMSO) 79.0 (C-1, JC1-H1 155 Hz); MALDI-TOF: C84H96O16N10 (1500.70): m/z 1523.66 [M+Na]+, 1539.67 [M+K]+. Compound 5: δH (d 6-DMSO) 4.97 (1 H, H-1), 4.66 (1 H, H-1′); δC (d 6-DMSO) 100.4 (C-1′, JC1′-H1’ 166 Hz), 79.25 (C-1, JC1-H1 156 Hz); MALDI-TOF: C106H121O21N11 (1883.87): m/z 1906.81 [M+Na]+, 1922.75 [M+K]+. Compound 6: δH (d 6-DMSO) 4.96 (1 H, H-1), 4.67 (1 H, H-1′), 4.59 (1 H, H-1′′), δC (d 6-DMSO) 101.2 (C-1′′, JC1′′-H1′′ 157 Hz), 100.70 (C-1′, JC1’-H1’ 161 Hz), 79.36 (C-1, JC1-H1 155 Hz); MALDI-TOF: C133H149O26N11 (2316.07): m/z 2339.40 [M+Na]+. Compound 7: [α]D +14.3 (c 0.2, H2O); δH (d 6-DMSO) 4.81 (1 H, H-1); δC (d 6-DMSO) 79.4 (C-1, JC1-H1 156 Hz); MALDI-TOF: C33H58O12N10 (786.42): m/z 787.49 [M+H]+, 809.49 [M+Na]+, 825.45 [M+K]+. Compound 8: [α]D -8.7 (c 0.1, H2O); δH (d 6-DMSO) 4.84 (1 H, H-1), 4.38 (1 H, H-1′); δC (d 6-DMSO) 102.6 (C-1′, JC1’-H1’ 160 Hz), 79.2 (C-1, JC1-H1 153 Hz); MALDI-TOF: C41H71O17N11 (989.50): m/z 990.53 [M+H]+, 1012.51 [M+Na]+, 1028.47 [M+K]+. Compound 9: [α]D -17.5 (c 0.08, H2O); δH (d 6-DMSO) 4.85 (1 H, H-1), 4.50 (1 H, H-1′′), 4.43 (1 H, H-1′); δC (d 6-DMSO) 102.4 (C-1′, JC1’-H1’ 160 Hz), 101.3 (C-1′′, JC1′′-H1′′ 158 Hz), 79.1 (C-1, JC1-H1 156 Hz); MALDI-TOF: C47H81O22N11 (1151.56): m/z 1174.55 [M+Na]+, 1190.49 [M+K].

  3. See footnote 2.

References

  • Anisfeld ST, Lansbury PTJ (1990) A partical, convergent method for glycopeptide synthesis. Org Chem 55:5560

    Article  CAS  Google Scholar 

  • Bodanszky M, Kwei JZ (1978) Side reactions in peptide-synthesis.7. Sequence dependence in formation of aminosuccynil derivatives from beta-benzyl-aspartyl-peptides. Int J Pept Protein Res 12:69

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Anisfeld ST, Lansbury PT Jr (1993) A partical, convergent method for glycopeptide synthesis. J Am Chem Soc 115:10531

    Article  CAS  Google Scholar 

  • Danishefsky SJ, Hu S, Cirillo PF, Eckhardt M, Seeberger PH (1997) A highly convergent total synthetic route to glycopeptides carrying a high-mannose core pentasaccharide domain N-linked to a natural peptide motif. Chem Eur J 3:1617

    Article  CAS  Google Scholar 

  • Dwek R (1996) Glycobiology: toward understanding the function of sugar. Chem Rev 96:683

    Article  PubMed  CAS  Google Scholar 

  • Gamblin DP, Scanlan EM, Davis BG (2007) Synthesis of glycopeptides and glycoproteins in comprehensive glycoscience I–IV, Vol. I. Elsevier, Oxford p 605 and references (17–30) therein

  • Helenius A, Aebi M (2001) Intracellular function of N-linked glycans. Science 291:2364

    Article  PubMed  CAS  Google Scholar 

  • Imperiali B, O’Connor SE (1999) Effect of N-linked glycosylation on gycopeptide and glycopeptide structure. Curr Opin Chem Biol 3:643

    Article  PubMed  CAS  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection free terminal amino groups in the solid phase synthesis of peptides. Anal Biochem 34:595

    Article  PubMed  CAS  Google Scholar 

  • Kajihara Y, Suzuki Y, Yamamoto N, Sasaki K, Sakakibara T, Juneja LR (2004) Color test for detection free terminal amino groups in the solid phase synthesis of peptides. Chem Eur J 10:971

    Article  PubMed  CAS  Google Scholar 

  • Kerékgyártó J, Ágoston K, Batta GY, Kamerling JP, Vliegenthart JFG (1998) Synthesys of Fully and partically Benzilated Glycosil Azides via Thioalkil Glycosides as Precursors for the Preparation of Glycopeptides. Tetrahedron Let 39:7189

    Article  Google Scholar 

  • Kerékgyártó J, Kalmár L, Szurmai Z, Harangi J, Hegyi O, Tóth GK (2008) 4 th Central European Conference Chemistry towards Biology, glycopeptides—a synthetic challenge Part 1, 8–11th September, Dobogókő, Hungary, 42

  • Knight P (1989) The Carbohydrate frontier. Biotechnology 7:35

    Article  CAS  Google Scholar 

  • Mandal M, Dudkin VY, Geng X, Danishefsky SJ (2004) In pursuit of carbohidrate-based HIV vaccines, part 1: the total-synthesys of hybrid type gp120 fragments. Angew Chem Int Ed 43:2557

    Article  CAS  Google Scholar 

  • Meinjohanns E, Meldal M, Paulsen H, Dwek RA, Bock K (1998) Novel sequential solid-phase synthesis of N-linked glicopeptides from natural sources. J Chem Soc Perkin Trans 1:549

    Article  Google Scholar 

  • Michael K (2007). In frontiers in modern carbohydrate chemistry, ACS Symposium series vol. 960, p 328

  • Neidigh JW, Fesinmeyer RM, Andersen NH (2002) Designing a 20-residue protein. Nat Struct Biol 9:425

    Article  PubMed  CAS  Google Scholar 

  • Rákosi K, Sz-Csikós O, Tóth GK, Kalmár L, Szurmai Z, Kerékgyártó J (2011) Synthesis of N-glycopeptides applying glycoamino acid building blocks with a combined Fmoc/Boc Strategy. Protein Pept Lett 18(7):679–683

    Google Scholar 

  • Tóth GK, Kádár K, Hegyi O, Csikós O, Kalmár L, Kerékgyártó J (2008) Glycopeptides—a synthetic challenge. J Pept Sci 14(8):S71

    Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-G, Warren JD, Dudkin VY, Zhang X, Iserloh U, Visser M, Eckhardt M, Seeberger PH, Danishefsky SJ (2006) A highly convergent synthesis of an N-linked glicopeptide presenting the H-type 2 human blood group determinant. Tetrahedron 62:4954

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the grant from the Hungarian National Science Foundation (OTKA-71753). We thank Dr Anikó Fekete for performing the MALDI-TOF spectra and Dr Zoltán Kele for performing the ESI MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor K. Tóth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerékgyártó, J., Kalmár, L., Szurmai, Z. et al. Synthesis of N-Glycopeptides by Convergent Assembly. Int J Pept Res Ther 18, 1–5 (2012). https://doi.org/10.1007/s10989-011-9271-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-011-9271-y

Keywords

Navigation