Quinoline-Thioureidopeptides: A New Approach for the Synthesis of Quinoline-Isothiocyanate and Their Peptide Linkage

  • T. Aravinda
  • H. S. Bhojya NaikEmail author
  • H. R. Prakash Naik
  • V. V. Suresh babu
  • H. P. Hemantha


We present an efficient synthetic route for quinoline condensed thioureidopeptidyl esters from corresponding isothiocyanate and amino acid esters. The utility of quinoline isothiocyanate as major building block for desired thioureidopeptides of quinoline interests, with good yield with excellent purity. All the new compounds are well characterized by IR, 1H NMR, mass and elemental analysis data.


Quinoline-thioureidopeptides Isothiocyanate Amino acid ester 



We thank to Kuvempu University for providing JRF, Indian Institute of science, Bangalore, for providing spectral data and University of Mysore, for providing elemental analysis facility.


  1. Andrew DA (2002) Heterocyclic-based peptidomimetics. Lett Pept Sci 8:267–272Google Scholar
  2. Biaolin Y, Zhaogui L, Mingjun Y, Jiancun Z (2008) An efficient method for the synthesis of disubstituted thioureas via the reaction of N,N′-di-Boc-substituted thiourea with alkyl and aryl amines under mild conditions. Tetrahedron Lett 49:3687–3690CrossRefGoogle Scholar
  3. Brindaban CR, Suvendu SD, Santanu B (2003) A simple and green procedure for the synthesis of symmetrical N,N1 -disubstituted thioureas on the surface of alumina under microwave irradiation. Arkivoc 9:14–20Google Scholar
  4. Briody TA, Hegarty AF, Scott FL (1977) Elimination-addition mechanism for the base catalysed conversion of S-alkylisothioureas to ureas. Tetrahedron 33:1469–1474CrossRefGoogle Scholar
  5. Bunin BA, Ellman JA (1992) A general and expedient method for the solid-phase synthesis of 1,4-benzodiazepine derivatives. J Am Chem Soc 114:10997–10998CrossRefGoogle Scholar
  6. Fabian J, Viola H, Mayer R (1967) Quantitative Beschreibung der UV-S-Absorplionen Einfacher Thiocarbonyl Verbindungen. Tetrahedron 23:4323–4329CrossRefGoogle Scholar
  7. Galabov AS, Galabov BS, Neykova NA (1980) Structure-activity relationship of diphenyl thiourea antiviral. J Med Chem 23:1048–1051PubMedCrossRefGoogle Scholar
  8. Gatto B, Capranico G, Palumbo M (1999) Drugs acting on DNA topoisomerase: recent advances and future perspectives. Curr Pharm Des 5:195–215PubMedGoogle Scholar
  9. Hirschmann R (1991) Medicinal chemistry in the golden age of biology: lessons from steroid and peptide research. Angew Chem Int Ed Engl 30:1278–1301CrossRefGoogle Scholar
  10. Hitotsuyanagi Y, Motegi S, Fukaya S, Takeya K (2002) A cis Amide Bond Surrogate Incorporating 124-Triazole. J Org Chem 67:3266–3271PubMedCrossRefGoogle Scholar
  11. Larsen C, Steliou K, Harpp DN (1978) Organic sulfur chemistry. 25. Thiocarbonyl transfer reagents. J Org Chem 43:337–339CrossRefGoogle Scholar
  12. Moree WJ, van-der Marel GA, Liskamp RJ (1995) Synthesis of Peptidosulfinamides and Peptidosulfonamides: Peptidomimetics Containing the Sulfinamide or Sulfonamide Transition-State Isostere. J Org Chem 60:5157–5169CrossRefGoogle Scholar
  13. Nowick JS, Smith EM, Pairish M (1996) Artificial β-sheets. Chem Soc Rev 25:401–415CrossRefGoogle Scholar
  14. Prakash Naik HR, Bhojya Naik HS, Ravikumar Naik TR, Raja Naika H, Gouthamchandra K, Mahmood R, Khadeer Ahamed BM (2009a) Synthsis of novel benzo [h] quinolines: wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur J Med Chem 44:981–989CrossRefGoogle Scholar
  15. Prakash Naik HR, Bhojya Naik HS, Ravikumar Naik TR, Bindu PJ, Raja Naika H, Aravinda T, Lamani DS (2009) Nanostructured TiO2 catalyzed microwave assisted synthesis of fusedquinolines–DNA binding, molecular docking and antioxidant activity. Med Chem 5:148–157CrossRefGoogle Scholar
  16. Shao YK, Xueb S (2006) Synthesis and herbicidal activity of N-(o fluorophenoxyacetyl) thiourea derivatives and related fused heterocyclic compounds. Arkivoc 10:63–68Google Scholar
  17. Singh MP, Joseph T, Kumar S, Lown JW (1992) Synthesis and sequence-specific DNA binding of a topoisomerase inhibitory analog of Hoechst 33258 designed for altered base and sequence recognition. Chem Res Toxicol 5:597–607PubMedCrossRefGoogle Scholar
  18. Sureshbabu VV, Patil BS, Venkataramanarao R (2006) Preparation, isolation, and characterization of N α-Fmoc-peptide isocyanate: solution synthesis of oligo-α-peptidyl urease. J Org Chem 71:7697–7705PubMedCrossRefGoogle Scholar
  19. Svatck M, Zahradnik R, Kjaer A (1959) Absorption spectra of alkyl isothiocyanate and V-alkyl monothiocarbamales. Acta Chem Scand 13:442–455CrossRefGoogle Scholar
  20. Wipf P, Vankatramana S (1996) A new thiazole synthesis by cyclocondensation of thioacids and alkynyl (Aryl) iodonium reagents. J Org Chem 61:8004–8005PubMedCrossRefGoogle Scholar
  21. Zhang Y, Cho CG, Posner GH, Talalay P (1992) Spectroscopic quantitation of organic isothiocyanales by cyclocondensation with vicinal dilhiols. Anal Biochem 205:100–107PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T. Aravinda
    • 1
  • H. S. Bhojya Naik
    • 1
    Email author
  • H. R. Prakash Naik
    • 1
  • V. V. Suresh babu
    • 2
  • H. P. Hemantha
    • 2
  1. 1.Department of Studies and Research in Industrial ChemistrySchool of Chemical Sciences, Kuvempu UniversityShankaraghattaIndia
  2. 2.Peptide Research Laboratory, Department of Studies in Chemistry, Central College CampusBangalore UniversityBangaloreIndia

Personalised recommendations