Skip to main content
Log in

The Proline-rich Antibacterial Peptide Bac7 Binds to and Inhibits in vitro the Molecular Chaperone DnaK

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Bac7, a cathelicidin peptide of the proline-rich group, inactivates bacteria in a stereospecific manner by entering target cells without any apparent membrane damage and by binding to as yet unknown intracellular targets. The present study was aimed at detecting these putative intracellular interactors, which might mediate the antibacterial action of this peptide. By using affinity resins functionalized with the N-terminal 1-35 fragment of Bac7, a single protein was specifically retained with high affinity from Escherichia coli cytoplasmic protein lysates. This ligand was identified as the heat shock protein DnaK, the Hsp70 homolog in E. coli. The interaction between the peptide and the chaperone is stereospecific, given that a resin prepared with the all- d enantiomer failed to retain the protein. In vitro, Bac7(1-35) formed a complex with DnaK with an affinity comparable to that of other known high-affinity peptide ligands. In addition, at 10–100 μM concentration, the peptide inhibited the protein refolding activity of the complete DnaK/DnaJ/GrpE/ATP molecular chaperone system in a dose-dependent manner. Despite these results, the in vitro sensitivity to the peptide, under growth permitting conditions, of DnaK-deficient E. coli strains was not significantly affected compared to the wild-type strain. This suggests that, apart from DnaK, other vital targets for the proline-rich AMPs are present in susceptible bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

References

  • Agerberth B, Lee JY, Bergman T et al (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854

    Article  PubMed  CAS  Google Scholar 

  • Benincasa M, Scocchi M, Podda E et al (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25:2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Bischofberger P, Han W, Feifel B, Schonfeld HJ, Christen P (2003) D-Peptides as inhibitors of the DnaK/DnaJ/GrpE chaperone system. J Biol Chem 278:19044–19047

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  PubMed  CAS  Google Scholar 

  • Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37:8965–8972

    Article  PubMed  CAS  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391

    PubMed  CAS  Google Scholar 

  • Chan YR, Gallo RL (1998) PR-39, a syndecan-inducing antimicrobial peptide, binds and affects p130(Cas). J Biol Chem 273:28978–28985

    Article  PubMed  CAS  Google Scholar 

  • Chesnokova LS, Slepenkov SV, Witt SN (2004) The insect antimicrobial peptide, l-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK. FEBS Lett 565:65–69

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Park CB, Yoon YG, Kim SC (1998) Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim Biophys Acta 1408:67–76

    PubMed  CAS  Google Scholar 

  • Cudic M, Otvos L Jr (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3:101–106

    Article  PubMed  CAS  Google Scholar 

  • Destoumieux D, Bulet P, Loew D et al (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  PubMed  CAS  Google Scholar 

  • Feifel B, Sandmeier E, Schonfeld HJ, Christen P (1996) Potassium ions and the molecular-chaperone activity of DnaK. Eur J Biochem 237:318–321

    Article  PubMed  CAS  Google Scholar 

  • Feifel B, Schonfeld HJ, Christen P (1998) D-peptide ligands for the co-chaperone DnaJ. J Biol Chem 273:11999–12002

    Article  PubMed  CAS  Google Scholar 

  • Frank RW, Gennaro R, Schneider K, Przybylski M, Romeo D (1990) Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem 265:18871–18874

    PubMed  CAS  Google Scholar 

  • Gaczynska M, Osmulski PA, Gao Y, Post MJ, Simons M (2003) Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 42:8663–8670

    Article  PubMed  CAS  Google Scholar 

  • Gallo RL, Ono M, Povsic T et al (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91:11035–11039

    Article  PubMed  CAS  Google Scholar 

  • Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57:3142–3146

    PubMed  CAS  Google Scholar 

  • Gennaro R, Scocchi M, Merluzzi L, Zanetti M (1998) Biological characterization of a novel mammalian antimicrobial peptide. Biochim Biophys Acta 1425:361–368

    PubMed  CAS  Google Scholar 

  • Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des 8:763–778

    Article  PubMed  CAS  Google Scholar 

  • Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

    Article  PubMed  CAS  Google Scholar 

  • Han W, Christen P (2003) Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J Biol Chem 278:19038–19043

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 21:293–322

    Article  PubMed  CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  PubMed  CAS  Google Scholar 

  • Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

    PubMed  CAS  Google Scholar 

  • Kragol G, Lovas S, Varadi G et al (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026

    Article  PubMed  CAS  Google Scholar 

  • Kragol G, Hoffmann R, Chattergoon MA et al (2002) Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur J Biochem 269:4226–4237

    Article  PubMed  CAS  Google Scholar 

  • Laufen T, Mayer MP, Beisel C et al (1999) Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci USA 96:5452–5457

    Article  PubMed  CAS  Google Scholar 

  • Liebscher M, Roujeinikova A (2009) Allosteric coupling between the lid and interdomain linker in DnaK revealed by inhibitor binding studies. J Bacteriol 191:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Liebscher M, Jahreis G, Lucke C et al (2007) Fatty acyl benzamido antibacterials based on inhibition of DnaK-catalyzed protein folding. J Biol Chem 282:4437–4446

    Article  PubMed  CAS  Google Scholar 

  • Liu X (2002) Concentrations of the GroEL/GroES and the DnaK/DnaJ/GrpE molecular chaperones in Escherichia coli under normal and heat shock conditions. M.D. thesis. Universität Zürich, Zürich, Switzerland

  • Mattiuzzo M, Bandiera A, Gennaro R et al (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 66:151–163

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P et al (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    Article  PubMed  CAS  Google Scholar 

  • Osborn MJ, Munson R (1974) Separation of the inner (cytoplasmic) and outer membranes of gram-negative bacteria. Methods Enzymol 31:642–653

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59:1138–1150

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr, Rogers ME, Consolvo PJ et al (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39:14150–14159

    Article  PubMed  CAS  Google Scholar 

  • Pierpaoli EV, Gisler SM, Christen P (1998) Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. Biochemistry 37:16741–16748

    Article  PubMed  CAS  Google Scholar 

  • Podda E, Benincasa M, Pacor S et al (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760:1732–1740

    PubMed  CAS  Google Scholar 

  • Reddy KV, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24:536–547

    Article  PubMed  CAS  Google Scholar 

  • Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Rudiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050

    Article  PubMed  CAS  Google Scholar 

  • Schmid D, Baici A, Gehring H, Christen P (1994) Kinetics of molecular chaperone action. Science 263:971–973

    Article  PubMed  CAS  Google Scholar 

  • Schonfeld HJ, Schmidt D, Schroder H, Bukau B (1995a) The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem 270:2183–2189

    Article  PubMed  CAS  Google Scholar 

  • Schonfeld HJ, Schmidt D, Zulauf M (1995b) Investigation of the molecular chaperone DnaJ by analytical ultracentrifugation. Prog Colloid Polym Sci 99:7–10

    Article  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  PubMed  CAS  Google Scholar 

  • Shamova O, Brogden KA, Zhao C et al (1999) Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun 67:4106–4111

    PubMed  CAS  Google Scholar 

  • Shi J, Ross CR, Leto TL, Blecha F (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl Acad Sci USA 93:6014–6018

    Article  PubMed  CAS  Google Scholar 

  • Stensvag K, Haug T, Sperstad SV et al (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32:275–285

    Article  PubMed  CAS  Google Scholar 

  • Tomasinsig L, Zanetti M (2005) The cathelicidins: structure, function and evolution. Curr Protein Pept Sci 6:23–34

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Falla TJ (2006) Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 7:653–663

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF et al (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Alessandro Tossi for critically reading the manuscript. This study was supported by grants from the Italian Ministry for University and Research (PRIN 2007) and from the Friuli Venezia Giulia Region (grant under the LR 26/2005, art. 23 for the R3A2 Network) to R. G., and from the Stiftung für Medizinische Forschung und Entwicklung, Zürich, to P. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Gennaro.

Additional information

Marco Scocchi and Christine Lüthy contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scocchi, M., Lüthy, C., Decarli, P. et al. The Proline-rich Antibacterial Peptide Bac7 Binds to and Inhibits in vitro the Molecular Chaperone DnaK. Int J Pept Res Ther 15, 147–155 (2009). https://doi.org/10.1007/s10989-009-9182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-009-9182-3

Keywords

Navigation