Advertisement

Soluble Glycosaminoglycans Inhibit the Interaction of TAT−PTD with Lipid Vesicles

  • Venkataswarup Tiriveedhi
  • Peter ButkoEmail author
Article

Abstract

Several models have been proposed for translocation of cell-penetrating peptides across membranes, but no general consensus on the mechanism of this process has emerged. It was hypothesized that heparan sulfate on the cell surface may play a role. We used fluorescence spectroscopy to study the effect of three soluble glycosaminoglycans—heparan sulfate, low-molecular-weight heparin, and dermatan sulfate—on the interaction of the fluorescently labeled peptide TAT−PTD with negatively charged small unilamellar vesicles. We found that the presence of glycosaminoglycans results in an order-of-magnitude increase in the apparent dissociation constant K d of the electrostatic component of the peptide/membrane interaction (from 0.13 to 2.6 mM). Thus, rather than aiding in the peptide’s penetration, soluble glycosaminoglycans competitively decrease TAT−PTD’s binding to the membrane, presumably by neutralizing its charge, and thereby attenuating electrostatic forces involved in the interaction. Our results, however, do not exclude a possible role of membrane-anchored glycosaminoglycans in the endocytotic transduction of CPPs across the cell membrane.

Keywords

Cell-penetrating peptides Glycosaminoglycans Membrane binding Fluorescence spectroscopy 

References

  1. Aris A, Villaverde A (2003) Engineering nuclear localization signals in modular protein vehicles for gene therapy. Biochem Biophys Res Commun 304:625–631PubMedCrossRefGoogle Scholar
  2. Barany-Wallje E, Keller S, Serowy S, Geibel S, Pohl P, Bienert M, Dathe M (2005) A critical reassessment of penetratin translocation across lipid membranes. Biophys J 89:2513–2521PubMedCrossRefGoogle Scholar
  3. Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28:145–151PubMedCrossRefGoogle Scholar
  4. Bielinska A, Kukowska-Latallo JF, Johnson J, Tomalia DA, Baker JR Jr (1996) Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res 24:2176–2182PubMedCrossRefGoogle Scholar
  5. Butko P, Huang F, Pusztai-Carey M, Surewicz WK (1996) Membrane permeabilization induced by cytolytic delta-endotoxin CytA from Bacillus thuringiensis var. israelensis. Biochemistry 35:11355–11360PubMedCrossRefGoogle Scholar
  6. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193PubMedCrossRefGoogle Scholar
  7. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450PubMedGoogle Scholar
  8. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471PubMedCrossRefGoogle Scholar
  9. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193PubMedCrossRefGoogle Scholar
  10. Hitz T, Iten R, Gardiner J, Namoto K, Walde P, Seebach D (2006) Interaction of alpha and beta-oligoarginine-acids and amides with anionic lipid vesicles: a mechanistic and thermodynamic study. Biochemistry 45:5817–5829PubMedCrossRefGoogle Scholar
  11. Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–253PubMedCrossRefGoogle Scholar
  12. Klein D, Mendoza V, Pileggi A, Molano RD, Barbe-Tuana FM, Inverardi L, Ricordi C, Pastori RL (2005) Delivery of TAT/PTD-fused proteins/peptides to islets via pancreatic duct. Cell Transplant 14:241–248PubMedCrossRefGoogle Scholar
  13. Kramer SD, Wunderli-Allenspach H (2003) No entry for TAT(44–57) into liposomes and intact MDCK cells: novel approach to study membrane permeation of cell-penetrating peptides. Biochim Biophys Acta 1609:161–169PubMedCrossRefGoogle Scholar
  14. Kukowska-Latallo JF, Raczka E, Quintana A, Chen C, Rymaszewski M, Baker JR Jr (2000) Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther 11:1385–1395PubMedCrossRefGoogle Scholar
  15. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRefGoogle Scholar
  16. Lundberg M, Johansson M (2002) Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 291:367–371PubMedCrossRefGoogle Scholar
  17. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414:127–139PubMedCrossRefGoogle Scholar
  18. Ozaki D, Sudo K, Asoh S, Yamagata K, Ito H, Ohta S (2004) Transduction of anti-apoptotic proteins into chondrocytes in cartilage slice culture. Biochem Biophys Res Commun 313:522–527PubMedCrossRefGoogle Scholar
  19. Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280:15300–15306PubMedCrossRefGoogle Scholar
  20. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590PubMedCrossRefGoogle Scholar
  21. Sandgren S, Cheng F, Belting M (2002) Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem 277:38877–38883PubMedCrossRefGoogle Scholar
  22. Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E (2002) Different mechanisms for cellular internalization of the HIV–1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem 269:494–501PubMedCrossRefGoogle Scholar
  23. Thoren PE, Persson D, Isakson P, Goksor M, Onfelt A, Norden B (2003) Uptake of analogs of penetratin, Tat(48–60) and oligoarginine in live cells. Biochem Biophys Res Commun 307:100–107PubMedCrossRefGoogle Scholar
  24. Tiriveedhi V, Butko P (2007) A fluorescence spectroscopy study on the interactions of the TAT−PTD peptide with model lipid membranes. Biochemistry 46:3888–3895PubMedCrossRefGoogle Scholar
  25. Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791PubMedCrossRefGoogle Scholar
  26. Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261PubMedCrossRefGoogle Scholar
  27. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017PubMedCrossRefGoogle Scholar
  28. Vives E, Richard JP, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4:125–132PubMedCrossRefGoogle Scholar
  29. Zhuo RX, Du B, Lu ZR (1999) In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release 57:249–257PubMedCrossRefGoogle Scholar
  30. Ziady AG, Ferkol T, Gerken T, Dawson DV, Perlmutter DH, Davis PB (1998) Ligand substitution of receptor targeted DNA complexes affects gene transfer into hepatoma cells. Gene Ther 5:1685–1697PubMedCrossRefGoogle Scholar
  31. Ziegler A, Blatter XL, Seelig A, Seelig J (2003) Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42:9185–9194PubMedCrossRefGoogle Scholar
  32. Ziegler A, Seelig J (2004) Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys J 86:254–263PubMedCrossRefGoogle Scholar
  33. Ziegler A, Seelig J (2008) Binding and clustering of glycosaminoglycans: a common property of mono- and multivalent cell-penetrating compounds. Biophys J 94:2142–2149PubMedCrossRefGoogle Scholar
  34. Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57:529–545PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryUniversity of Southern MississippiHattiesburgUSA
  2. 2.BRB 319, Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreUSA

Personalised recommendations